3 research outputs found

    Maternal phthalate and phthalate alternative metabolites and urinary biomarkers of estrogens and testosterones across pregnancy

    No full text
    Background/objectives: Pregnant women are ubiquitously exposed to phthalates from food packaging materials and personal care products. Phthalates alter estrogen and testosterone concentrations in experimental models, but their ability to impact these hormones in human pregnancy is not well characterized. Methods: We recruited women ages 18–40 into the Illinois Kids Development Study (I-KIDS) in early pregnancy. Participants provided up to 5 first-morning urine samples across pregnancy (8–40 weeks gestation) that we pooled for quantification of 19 phthalate or phthalate alternative metabolites. Either individual (ng/mL) or molar sums (nmol/mL) of metabolites were used as exposure biomarkers. We summed urinary concentrations (ng/mL) of eight major estrogen (SumEstrogens) and two major testosterone (SumTestosterones) metabolites measured at median 13, 28, and 34 weeks gestation. We also estimated the ratio of estrogens-to-androgens. Linear mixed-effects models assessed relationships of phthalates/alternatives as continuous measures or as concentration quartiles with SumEstrogens, SumTestosterones, and the Estrogen/Androgen ratio in 434 women. In our models, we controlled for age, race, education, parity, smoking in the first trimester, pre-pregnancy body mass index, diet quality, conception season, fetal sex, and gestational age at hormone assessment. We also explored whether gestational age at hormone assessment or fetal sex modified these associations. All biomarkers and outcomes were specific gravity-adjusted, and continuous exposures and outcomes were also natural log-transformed. Results: Most participants were non-Hispanic white (80.9%), college educated (82.2%), and had urinary phthalate/alternative metabolite concentrations similar to those of reproductive-aged U.S. women. Overall, select phthalate metabolites were positively associated with SumEstrogens and SumTestosterones, but negatively associated with the Estrogen/Androgen ratio. For example, SumEstrogens was 5.1% (95%CI: 1.8, 8.5) higher with every 2-fold increase in sum of di(2-ethylhexyl) phthalate metabolites, while SumTestosterones was 7.9% (95%CI: 1.0, 15.3) higher and Estrogen/Androgen ratio was −7.7% (95%CI: −13.6, −1.4) lower with every 2-fold increase in monoethyl phthalate. However, phthalate alternatives were only positively associated with SumEstrogens, which was 2.4% (95%CI: 0.4, 4.5) and 3.2% (95%CI: 0.7, 5.8) higher with every 2-fold increase in sum of di(isononyl) cyclohexane-1,2-dicarboxylate metabolites and sum of di(2-ethylhexyl) terephthalate metabolites, respectively. Gestational age- and fetal sex-specific associations were only consistently observed for associations of phthalates/alternatives with SumEstrogens, where associations were strongest in mid-to-late pregnancy in women carrying females. Conclusion: Phthalates/alternatives may impact gestational hormones, with potential for gestational age- and fetal sex-specific associations. Whether maternal urinary estrogens and testosterones mediate associations of phthalates/alternatives with pregnancy and fetal outcomes merits further investigation

    Urinary phthalate metabolite concentrations and serum hormone levels in pre- and perimenopausal women from the Midlife Women’s Health Study

    No full text
    Background: Phthalate exposure is associated with altered reproductive function, but little is known about associations between phthalate and hormone levels in midlife women. Methods: This cross-sectional analysis includes 45–54-year-old pre- and perimenopausal women from Baltimore, MD and its surrounding counties enrolled in the Midlife Women’s Health Study (n = 718). Serum and urine samples were collected from participants once a week for four consecutive weeks to span the menstrual cycle. Serum samples were assayed for estradiol, testosterone, progesterone, sex hormone binding globulin (SHBG), follicle-stimulating hormone (FSH), and anti-Müllerian hormone (AMH), and geometric means were calculated for each hormone across all four weeks. Urine samples were analyzed for nine phthalate metabolites from pools of one-to-four urine samples. Phthalate metabolite concentrations were specific gravity-adjusted and assessed as individual metabolites or as molar sums of metabolites from common parents (di(2-ethylhexyl) phthalate metabolites, ∑DEHP), exposure sources (plastic, ∑Plastics; personal care products, ∑PCP), biological activity (anti-androgenic, ∑AA), and sum of all metabolites (∑Phthalates). We used linear regression models to assess overall associations of phthalate metabolites with hormones, controlling for important demographic, lifestyle, and health factors. We also explored whether associations differed by menopause status, body mass index (BMI), and race/ethnicity. Results: Most participants were non-Hispanic white (67%) or black (29%), college-educated (65%), employed (80%), and had somewhat higher mean urinary phthalate metabolite concentrations than other U.S. women. Overall, the following positive associations were observed between phthalate metabolites and hormones: ∑DEHP (%Δ: 4.9; 95%CI: 0.5, 9.6), ∑Plastics (%Δ: 5.1; 95%CI: 0.3, 10.0), and ∑AA (%Δ: 7.8; 95%CI: 2.3, 13.6) with estradiol; MiBP (%Δ: 6.6; 95%CI: 1.5, 12.1) with testosterone; ∑DEHP (%Δ: 8.3; 95%CI: 1.5, 15.6), ∑Plastics (%Δ: 9.8; 95%CI: 2.4, 17.7), MEP (%Δ: 4.6; 95%CI: 0.1, 9.2), ∑PCP (%Δ: 6.0; 95%CI: 0.2, 12.2), ∑Phthalates (%Δ: 9.0; 95%CI: 2.1, 16.5), and ∑AA (%Δ: 12.9; 95%CI: 4.4, 22.1) with progesterone; and MBP (%Δ: 8.5; 95%CI: 1.2, 16.3) and ∑AA (%Δ: 9.0; 95%CI: 1.3, 17.4) with AMH. Associations of phthalate metabolites with hormones differed by menopause status (strongest in premenopausal women for estradiol, progesterone, and FSH), BMI (strongest in obese women for progesterone), and race/ethnicity (strongest in non-Hispanic white women for estradiol and AMH). Conclusions: We found that phthalate metabolites were positively associated with several hormones in midlife women, and that some demographic and lifestyle characteristics modified these associations. Future longitudinal studies are needed to corroborate these findings in more diverse midlife populations

    Associations of urinary non-persistent endocrine disrupting chemical biomarkers with early-to-mid pregnancy plasma sex-steroid and thyroid hormones

    No full text
    Background/Objectives: Pregnant women are exposed to numerous endocrine disrupting chemicals (EDCs) that can affect hormonal pathways regulating pregnancy outcomes and fetal development. Thus, we evaluated overall and fetal sex-specific associations of phthalate/replacement, paraben, and phenol biomarkers with sex-steroid and thyroid hormones. Methods: Illinois women (n = 302) provided plasma for progesterone, estradiol, testosterone, free T4 (FT4), total T4 (TT4), and thyroid stimulating hormone (TSH) at median 17 weeks gestation. Women also provided up-to-five first-morning urine samples monthly across pregnancy (8–40 weeks), which we pooled to measure 19 phthalate/replacement metabolites (reflecting ten parent compounds), three parabens, and six phenols. We used linear regression to evaluate overall and fetal sex-specific associations of biomarkers with hormones, as well as weighted quantile sum and Bayesian kernel machine regression (BKMR) to assess cumulative associations, non-linearities, and chemical interactions. Results: In women of relatively high socioeconomic status, several EDC biomarkers were associated with select hormones, without cumulative or non-linear associations with progesterone, FT4, or TT4. The biomarker mixture was negatively associated with estradiol (only at higher biomarker concentrations using BKMR), testosterone, and TSH, where each 10% mixture increase was associated with −5.65% (95% CI: −9.79, −1.28) lower testosterone and −0.09 μIU/mL (95% CI: −0.20, 0.00) lower TSH. Associations with progesterone, testosterone, and FT4 did not differ by fetal sex. However, in women carrying females, we identified an inverted u-shaped relationship of the mixture with estradiol. Additionally, in women carrying females, each 10% increase in the mixture was associated with 1.50% (95% CI: −0.15, 3.18) higher TT4, whereas in women carrying males, the mixture was associated with −1.77% (95% CI: −4.08, 0.58) lower TT4 and −0.18 μIU/mL (95% CI: −0.33, −0.03) lower TSH. We also identified select chemical interactions. Conclusion: Some biomarkers were associated with early-to-mid pregnancy hormones. There were some sex-specific and non-linear associations. Future studies could consider how these findings relate to pregnancy/birth outcomes
    corecore