44 research outputs found

    Non-Orthogonal Multiple Access for FSO Backhauling

    Full text link
    We consider a free space optical (FSO) backhauling system which consists of two base stations (BSs) and one central unit (CU). We propose to employ non-orthogonal multiple access (NOMA) for FSO backhauling where both BSs transmit at the same time and in the same frequency band to the same photodetector at the CU. We develop a dynamic NOMA scheme which determines the optimal decoding order as a function of the channel state information at the CU and the quality of service requirements of the BSs, such that the outage probabilities of both BSs are jointly minimized. Moreover, we analyze the performance of the proposed NOMA scheme in terms of the outage probability over Gamma-Gamma FSO turbulence channels. We further derive closed-form expressions for the outage probability for the high signal-to-noise ratio regime. Our simulation results confirm the analytical derivations and reveal that the proposed dynamic NOMA scheme significantly outperforms orthogonal transmission and existing NOMA schemes.Comment: This paper has been submitted to IEEE WCNC 201

    Cloud Compute-and-Forward with Relay Cooperation

    Full text link
    We study a cloud network with M distributed receiving antennas and L users, which transmit their messages towards a centralized decoder (CD), where M>=L. We consider that the cloud network applies the Compute-and-Forward (C&F) protocol, where L antennas/relays are selected to decode integer equations of the transmitted messages. In this work, we focus on the best relay selection and the optimization of the Physical-Layer Network Coding (PNC) at the relays, aiming at the throughput maximization of the network. Existing literature optimizes PNC with respect to the maximization of the minimum rate among users. The proposed strategy maximizes the sum rate of the users allowing nonsymmetric rates, while the optimal solution is explored with the aid of the Pareto frontier. The problem of relay selection is matched to a coalition formation game, where the relays and the CD cooperate in order to maximize their profit. Efficient coalition formation algorithms are proposed, which perform joint relay selection and PNC optimization. Simulation results show that a considerable improvement is achieved compared to existing results, both in terms of the network sum rate and the players' profits.Comment: Submitted to IEEE Transactions on Wireless Communication

    Statistical Modeling of FSO Fronthaul Channel for Drone-based Networks

    Full text link
    We consider a drone-based communication network, where several drones hover above an area and serve as mobile remote radio heads for a large number of mobile users. We assume that the drones employ free space optical (FSO) links for fronthauling of the users' data to a central unit. The main focus of this paper is to quantify the geometric loss of the FSO channel arising from random fluctuation of the position and orientation of the drones. In particular, we derive upper and lower bounds, corresponding approximate expressions, and a closed-form statistical model for the geometric loss. Simulation results validate our derivations and quantify the FSO channel quality as a function of the drone's instability, i.e., the variation of its position and orientation.Comment: This paper has been submitted to ICC 201
    corecore