44 research outputs found
Non-Orthogonal Multiple Access for FSO Backhauling
We consider a free space optical (FSO) backhauling system which consists of
two base stations (BSs) and one central unit (CU). We propose to employ
non-orthogonal multiple access (NOMA) for FSO backhauling where both BSs
transmit at the same time and in the same frequency band to the same
photodetector at the CU. We develop a dynamic NOMA scheme which determines the
optimal decoding order as a function of the channel state information at the CU
and the quality of service requirements of the BSs, such that the outage
probabilities of both BSs are jointly minimized. Moreover, we analyze the
performance of the proposed NOMA scheme in terms of the outage probability over
Gamma-Gamma FSO turbulence channels. We further derive closed-form expressions
for the outage probability for the high signal-to-noise ratio regime. Our
simulation results confirm the analytical derivations and reveal that the
proposed dynamic NOMA scheme significantly outperforms orthogonal transmission
and existing NOMA schemes.Comment: This paper has been submitted to IEEE WCNC 201
Cloud Compute-and-Forward with Relay Cooperation
We study a cloud network with M distributed receiving antennas and L users,
which transmit their messages towards a centralized decoder (CD), where M>=L.
We consider that the cloud network applies the Compute-and-Forward (C&F)
protocol, where L antennas/relays are selected to decode integer equations of
the transmitted messages. In this work, we focus on the best relay selection
and the optimization of the Physical-Layer Network Coding (PNC) at the relays,
aiming at the throughput maximization of the network. Existing literature
optimizes PNC with respect to the maximization of the minimum rate among users.
The proposed strategy maximizes the sum rate of the users allowing nonsymmetric
rates, while the optimal solution is explored with the aid of the Pareto
frontier. The problem of relay selection is matched to a coalition formation
game, where the relays and the CD cooperate in order to maximize their profit.
Efficient coalition formation algorithms are proposed, which perform joint
relay selection and PNC optimization. Simulation results show that a
considerable improvement is achieved compared to existing results, both in
terms of the network sum rate and the players' profits.Comment: Submitted to IEEE Transactions on Wireless Communication
Statistical Modeling of FSO Fronthaul Channel for Drone-based Networks
We consider a drone-based communication network, where several drones hover
above an area and serve as mobile remote radio heads for a large number of
mobile users. We assume that the drones employ free space optical (FSO) links
for fronthauling of the users' data to a central unit. The main focus of this
paper is to quantify the geometric loss of the FSO channel arising from random
fluctuation of the position and orientation of the drones. In particular, we
derive upper and lower bounds, corresponding approximate expressions, and a
closed-form statistical model for the geometric loss. Simulation results
validate our derivations and quantify the FSO channel quality as a function of
the drone's instability, i.e., the variation of its position and orientation.Comment: This paper has been submitted to ICC 201