11 research outputs found

    APPLICATION OF ADJOINT CMAQ CHEMICAL TRANSPORT MODEL IN THE ATHENS GREATER AREA: SENSITIVITIES STUDY ON OZONE CONCENTRATIONS

    Get PDF
    An operational meteorology and air quality forecasting system is currently under development by the Environmental Research Laboratory of NCSR “Demokritos”. The system is based on the meteorological model MM5, the in-house EMISLAB emissions processing system and the chemical transport model CMAQ. It is configured to apply on the Greater Athens Area with a 4-domains nested configuration focusing on a high spatial resolution (1x1 km2) inner domain. The system produces meteorological and air quality predictions for a 72-hours time horizon with 1 hour time step. This paper uses the output of the operational system to apply the CMAQ adjoint for ozone sensitivity calculations, focusing for the two days of 18 and 19 July 2005. In the current study, the calculated ground level ozone concentrations at certain defined locations and times are considered as the “response functional”. Sensitivities of the response functional with respect to the state variables (species concentrations on the grid points and species emissions, e.g., NOX, CO, VOCs) are calculated by running the adjoint model backwards in time (reverse mode). The distribution of the sensitivities in the computational domain, obtained for different times, provides essential information for the analysis: isosurfaces of sensitivities delineate influence regions, i.e., areas where perturbations in some concentrations will result in significant changes in the ozone concentrations in the area of interest at the final time

    Time Series Forecasting of Hourly PM10 Using Localized Linear Models

    Full text link

    Projection of Forest Fire Danger due to Climate Change in the French Mediterranean Region

    Full text link
    Fire occurrence and behaviour in Mediterranean-type ecosystems strongly depend on the air temperature and wind conditions, the amount of fuel load and the drought conditions that drastically increase flammability, particularly during the summer period. In order to study the fire danger due to climate change for these ecosystems, the meteorologically based Fire Weather Index (FWI) can be used. The Fire Weather Index (FWI) system, which is part of the Canadian Forest Fire Danger Rating System (CFFDRS), has been validated and recognized worldwide as one of the most trusted and important indicators for meteorological fire danger mapping. A number of FWI system components (Fire Weather Index, Drought Code, Initial Spread Index and Fire Severity Rating) were estimated and analysed in the current study for the Mediterranean area of France. Daily raster-based data-sets for the fire seasons (1st May–31st October) of a historic and a future time period were created for the study area based on representative concentration pathway (RCP) 4.5 and RCP 8.5 scenarios, outputs of CNRM-SMHI and MPI-SMHI climate models. GIS spatial analyses were applied on the series of the derived daily raster maps in order to provide a number of output maps for the study area. The results portray various levels of changes in fire danger, in the near future, according to the examined indices. Number of days with high and very high FWI values were found to be doubled compared to the historical period, in particular in areas of the Provence-Alpes-Côte d’Azur (PACA) region and Corsica. The areas with high Initial Spread Index and Seasonal Spread Index values increased as well, forming compact zones of high fire danger in the southern part of the study area, while the Drought Code index did not show remarkable changes. The current study on the evolution of spatial and temporal distribution of forest fire danger due to climate change can provide important knowledge to the decision support process for prevention and management policies of forest fires both at a national and EU level

    A Sensitivity Study of High-Resolution Climate Simulations for Greece

    Full text link
    In the present study, the ability of the Advanced Weather Research and Forecasting numerical model (WRF-ARW) to perform climate regionalization studies in the topographically complex region of Greece, was examined in order to explore the possibility of a more reliable selection of physical schemes for the simulation of historical and future high resolution (5 km) climate model experiments to investigate the impact of climate change. This work is directly linked to a previous study investigating the performance of seven different model setups for one year, from which the need was derived for further examination of four different simulations to investigate the model sensitivity on the representation of surface variables statistics during a 5-year period. The results have been compared with observational data for maximum and minimum air temperature and daily precipitation through statistical analysis. Clear similarities were found in precipitation patterns among simulations and observations, yielding smoothly its inter-annual variability, especially during the wettest months and summer periods, with the lowest positive percentage BIAS calculated at about 19% for the selected combination of physics parameterizations (PP3). Regarding the maximum and minimum temperature, statistical analysis showed a high correlation above 0.9, and negative bias around 1−1.5 °C, and positive bias near 2 °C, respectively

    Weathering Mechanisms of Porous Marl Stones in Coastal Environments and Evaluation of Conservation Treatments as Potential Adaptation Action for Facing Climate Change Impact

    Full text link
    This work presents the methodological approach followed for the study of the interaction of natural stone monuments with the local microclimate (exposure to RH, temperature alterations, wind, marine aerosol). This was implemented with the documentation of the associated weathering phenomena and the study of historic climate data of the area. The paper is focused on the main weathering mechanisms of the marly limestone at the Hellenistic theater of Zea in Piraeus, Greece. Based on the weathering phenomena identified, the development of the appropriate mitigation strategy was based on the physical, chemical and mechanical characterization of the natural stones, along with the evaluation of different conservation treatments, considering the characteristics of the coastal environment. Considering the mineralogy of marly limestones, silane-based materials were selected for providing both consolidation and water repellency effects. The evaluation of the conservation treatments was based on the modification of microstructural and water-related properties of natural stone samples, along with their consequent effect on their durability against accelerated aging tests. The results indicated that the design of migration actions proved to be multivariable parameter, depending on the intrinsic stone properties, the environmental parameters and the conservation efficacy of the treatments

    High Resolution Future Projections of Drought Characteristics in Greece Based on SPI and SPEI Indices

    Full text link
    Future changes in drought characteristics in Greece were investigated using dynamically downscaled high-resolution simulations of 5 km. The Weather Research and Forecasting model simulations were driven by EC-EARTH output for historical and future periods, under Representative Concentration Pathways 4.5 and 8.5. For the drought analysis, the standardized precipitation index (SPI) and the standardized precipitation-evapotranspiration index (SPEI) were calculated. This work contributed to achieve an improved characterization of the expected high-resolution changes of drought in Greece. Overall, the results indicate that Greece will face severe drought conditions in the upcoming years, particularly under RCP8.5, up to 8/5 y of severity change signal. The results of 6-month timescale indices suggest that more severe and prolonged drought events are expected with an increase of 4 months/5 y, particularly in areas of central and eastern part of the country in near future, and areas of the western parts in far future. The indices obtained in a 12-month timescale for the period 2075–2099 and under RCP8.5 have shown an increase in the mean duration of drought events along the entire country. Drought conditions will be more severe in lowland areas of agricultural interest (e.g., Thessaly and Crete)

    Effect of the Standard Nomenclature for Air Pollution (SNAP) Categories on Air Quality over Europe

    Full text link
    The contribution of different anthropogenic source-sectors on ozone mixing ratios and PM2.5 concentrations over Europe is assessed for a summer month (July 2006) using the US Environmental Protection Agency’s (EPA’s) Models-3 framework and the Netherlands Organization for Applied Scientific Research (TNO) anthropogenic emissions for 2006. Anthropogenic emission sources have been classified into 10 different Standard Nomenclature for Air Pollution (SNAP) categories. The road transport category, which is mainly responsible for NOX emissions, is estimated to have the major impact on Max8hrO3 mixing ratio suggesting an increase of 6.8% on average over Europe, while locally it is more than 20%. Power generation category is estimated to have the major impact on PM2.5 concentrations since it is the major source of SO2 emissions, suggesting an increase of 22.9% on average over Europe, while locally it is more than 60%. Agriculture category is also contributing significantly on PM2.5 concentrations, since agricultural activities are the major source of NH3 emissions, suggesting an increased by 16.1% on average over Europe, while in regions with elevated NH3 emissions the increase is up to 40%

    Quantifying the Occurrence of Multi-Hazards Due to Climate Change

    Full text link
    This paper introduces a climatic multi-hazard risk assessment for Greece, as the first-ever attempt to enhance scientific knowledge for the identification and definition of hazards, a critical element of risk-informed decision making. Building on an extensively validated climate database with a very high spatial resolution (5 × 5 km2), a detailed assessment of key climatic hazards is performed that allows for: (a) the analysis of hazard dynamics and their evolution due to climate change and (b) direct comparisons and spatial prioritization across Greece. The high geographical complexity of Greece requires that a large number of diverse hazards (heatwaves—TX, cold spells—TN, torrential rainfall—RR, snowstorms, and windstorms), need to be considered in order to correctly capture the country’s susceptibility to climate extremes. The current key findings include the dominance of cold-temperature extremes in mountainous regions and warm extremes over the coasts and plains. Extreme rainfall has been observed in the eastern mainland coasts and windstorms over Crete and the Aegean and Ionian Seas. Projections of the near future reveal more warm extremes in northern areas becoming more dominant all over the country by the end of the century

    Assessing the Effects of Forest Fires on Interconnected Critical Infrastructures under Climate Change. Evidence from South France

    Full text link
    The present work introduces a case study on the climate resilience of interconnected critical infrastructures to forest fires, that was performed within the framework on H2020 EU-CIRCLE project (GA 653824). It was conducted in South France, one of the most touristic European regions, and also one of the regions at the highest forest fire risk that is projected to be amplified under future climate conditions. The case study has been implemented through a co-creation framework with local stakeholders, which is critical in moving beyond physical damages to the infrastructures, introducing the elements of infrastructure business continuity and societal resilience. Future forest fires extremes are anticipated to impact the interconnections of electricity and transportation networks that could further cascade to communities throughout South France. The work highlighted the benefits of enhancing co-operation between academia, emergency responders, and infrastructure operators as a critical element in enhancing resilience through increased awareness of climate impacts, new generated knowledge on fire extremes and better cooperation between involved agencies
    corecore