2 research outputs found

    Detailed Glacier Area Change Analysis in the European Alps with Deep Learning

    Get PDF
    Glacier retreat is a key indicator of climate change and requires regular updates of the glacier area. Recently, the release of a new inventory for the European Alps showed that glaciers continued to retreat at about 1.3% per year from 2003 to 2015. The outlines were produced by manually correcting the results of a semi-automatic method applied to Sentinel-2 imagery. In this work we develop a fully-automatic pipeline based on Deep Learning to investigate the evolution of the glaciers in the Alps from 2015 to present (2023). After outlier filtering, we provide individual estimates for around 1300 glaciers, representing 87% of the glacierized area. Regionally we estimate an area loss of -1.8% per year, with large variations between glaciers. Code and data are available at https://github.com/dcodrut/glacier_mapping_alps_tccml

    Understanding the Role of Weather Data for Earth Surface Forecasting using a ConvLSTM-based Model

    Get PDF
    Climate change is perhaps the biggest single threat to humankind and the environment, as it severely impacts our terrestrial surface, home to most of the living species. Inspired by video prediction and exploiting the availability of Copernicus Sentinel-2 images, recent studies have attempted to forecast the land surface evolution as a function of past land surface evolution, elevation, and weather. Further extending this paradigm, we propose a model based on convolutional long short-term memory (ConvLSTM) that is computationally efficient (lightweight), however obtains superior results to the previous baselines. By introducing a ConvLSTM-based architecture to this problem, we can not only ingest the heterogeneous data sources (Sentinel-2 time-series, weather data, and a Digital Elevation Model (DEM)) but also explicitly condition the future predictions on the weather. Our experiments confirm the importance of weather parameters in understanding the land cover dynamics and show that weather maps are significantly more important than the DEM in this task. Furthermore, we perform generative simulations to investigate how varying a single weather parameter can alter the evolution of the land surface. All studies are performed using the EarthNet2021 dataset. The code, additional materials and results can be found at https://github.com/dcodrut/weather2land
    corecore