4 research outputs found

    Synergistic Effect of Mandarin Peels and Hesperidin with Sodium Nitrite against Some Food Pathogen Microbes

    No full text
    Food preservatives such as NaNO2, which are widely used in human food products, undoubtedly affect, to some extent, human organs and health. For this reason, there is a need to reduce the hazards of these chemical preservatives, by replacing them with safe natural bio-preservatives, or adding them to synthetic ones, which provides synergistic and additive effects. The Citrus genus provides a rich source of such bio-preservatives, in addition to the availability of the genus and the low price of citrus fruit crops. In this study, we identify the most abundant flavonoids in citrus fruits (hesperidin) from the polar extract of mandarin peels (agro-waste) by using spectroscopic techniques, as well as limonene from the non-polar portion using GC techniques. Then, we explore the synergistic and additive effects of hesperidin from total mandarin extract with widely used NaNO2 to create a chemical preservative in food products. The results are promising and show a significant synergistic and additive activity. The combination of mandarin peel extract with NaNO2 had synergistic antibacterial activity against B. cereus, Staph. aureus, E. coli, and P. aeruginosa, while hesperidin showed a synergistic effect against B. cereus and P. aeruginosa and an additive effect against Staph. aureus and E. coli. These results refer to the ability of reducing the concentration of NaNO2 and replacing it with a safe natural bio-preservative such as hesperidin from total mandarin extract. Moreover, this led to gaining benefits from their biological and nutritive values

    Studying the Antioxidant and the Antimicrobial Activities of Leaf Successive Extracts Compared to the Green-Chemically Synthesized Silver Nanoparticles and the Crude Aqueous Extract from <i>Azadirachta indica</i>

    No full text
    Azadirachta indica has several medicinal uses, especially its leaves. Over 4000 years ago, Ayurvedic medicine used it for its therapeutic benefits. This study examined the biological activity of Neem crude extracts and green-chemically produced Ag-NPs. TPCs and TFCs were measured for polyphenolic burden in consecutive extracts. DPPH, ABTS, and FRAP experiments measured antioxidant and antimicrobial activity against seven strains of food-borne pathogenic bacteria and eight mycotoxigenic fungi. At 1000 μg/mL, ethanolic and aqueous extracts of Neem leaves had 80.10% and 69.41% in DPPH and 71.42% and 74.61% in ABTS assays for the antioxidant activity, compared to 93.58% for BHT. At 800 μg/mL, both extracts showed antioxidant activity with 57.52 and 57.87 μM in the FRAP assay, compared to 139.97 μM for Ascorbic acid. Both extracts demonstrated antimicrobial activity with 0.02 to 0.35 mg/mL as antibacterials, 0.03 to 2.17 mg/mL as antifungals, and 0.04 to 0.42 mg/mL as antibacterials. Compared to Neem crude extract, Neem Ag-NPs had the lowest MIC values as antibacterials and antifungals at 0.05 to 0.07 mg/mL and 0.07 to 0.20 mg/mL, respectively. Neem Ag-NPs and crude extract boost antioxidant and antibacterial properties

    Proximate Analysis of <i>Moringa oleifera</i> Leaves and the Antimicrobial Activities of Successive Leaf Ethanolic and Aqueous Extracts Compared with Green Chemically Synthesized Ag-NPs and Crude Aqueous Extract against Some Pathogens

    No full text
    Research on the use of different parts of the Moringa oleifera plant as a nutritional and pharmaceutical resource for human and animals has increased in recent years. This study aimed to investigate the chemical composition and the TPCs and TFCs of Moringa leaves, the antimicrobial activities of Moringa successive ethanolic, aqueous, crude aqueous extracts, and green-chemically synthesized characterized Ag-NPs. The results indicated that the ethanolic extract recorded the highest activity against E. coli. On the other side, the aqueous extract showed higher activity, and its effects ranged from 0.03 to 0.33 mg/mL against different strains. The MIC values of Moringa Ag-NPs against different pathogenic bacteria ranged from 0.05 mg/mL to 0.13 mg/mL, and the activity of the crude aqueous extract ranged from 0.15 to 0.83 mg/mL. For the antifungal activity, the ethanolic extract recorded the highest activity at 0.04 mg/mL, and the lowest activity was recorded at 0.42 mg/mL. However, the aqueous extract showed effects ranging from 0.42 to 1.17 mg/mL. Moringa Ag-NPs showed higher activity against the different fungal strains than the crude aqueous extract, and they ranged from 0.25 to 0.83 mg/mL. The MIC values of the Moringa crude aqueous extract ranged from 0.74 to 3.33 mg/mL. Moringa Ag-NPs and their crude aqueous extract may be utilized to boost antimicrobial attributes

    Characterization and Isolation of the Major Biologically Active Metabolites Isolated from Ficus retusa and Their Synergistic Effect with Tetracycline against Certain Pathogenic-Resistant Bacteria

    No full text
    Globally, pathogenic microbes have reached a worrisome level of antibiotic resistance. Our work aims to identify and isolate the active components from the bioactive Ficus retusa bark extract and assess the potential synergistic activity of the most major compounds&rsquo; constituents with the antibiotic tetracycline against certain pathogenic bacterial strains. The phytochemical screening of an acetone extract of F. retusa bark using column chromatography led to the identification of 10 phenolic components. The synergistic interaction of catechin and chlorogenic acid as the most major compounds with tetracycline was evaluated by checkerboard assay followed by time-kill assay, against Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia, and Salmonella typhi with fraction inhibitory concentration index values (FICI) of 0.38, 0.43, 0.38, 0.38, 0.38, and 0.75 for catechin and 0.38, 0.65, 0.38, 0.63, 0.38, and 0.75 for chlorogenic acid. The combination of catechin and chlorogenic acid with tetracycline significantly enhanced antibacterial action against gram-positive and gram-negative microorganisms; therefore, catechin and chlorogenic acid combinations with tetracycline could be employed as innovative and safe antibiotics to combat microbial resistance
    corecore