26 research outputs found
Electronic Properties of Molecules and Surfaces with a Self\uad-Consistent Interatomic van der Waals Density Functional.
How strong is the effect of van der Waals (vdW) interactions on the electronic properties of molecules
and extended systems? To answer this question, we derived a fully self-consistent implementation of the
density-dependent interatomic vdW functional of Tkatchenko and Scheffler [Phys. Rev. Lett. 102, 073005
(2009)]. Not surprisingly, vdW self-consistency leads to tiny modifications of the structure, stability, and
electronic properties of molecular dimers and crystals. However, unexpectedly large effects were found in
the binding energies, distances, and electrostatic moments of highly polarizable alkali-metal dimers. Most
importantly, vdW interactions induced complex and sizable electronic charge redistribution in the vicinity
of metallic surfaces and at organic-metal interfaces. As a result, a substantial influence on the computed
work functions was found, revealing a nontrivial connection between electrostatics and long-range electron
correlation effects
Non-covalent interactions across organic and biological subsets of chemical space: Physics-based potentials parametrized from machine learning
Classical intermolecular potentials typically require an extensive
parametrization procedure for any new compound considered. To do away with
prior parametrization, we propose a combination of physics-based potentials
with machine learning (ML), coined IPML, which is transferable across small
neutral organic and biologically-relevant molecules. ML models provide
on-the-fly predictions for environment-dependent local atomic properties:
electrostatic multipole coefficients (significant error reduction compared to
previously reported), the population and decay rate of valence atomic
densities, and polarizabilities across conformations and chemical compositions
of H, C, N, and O atoms. These parameters enable accurate calculations of
intermolecular contributions---electrostatics, charge penetration, repulsion,
induction/polarization, and many-body dispersion. Unlike other potentials, this
model is transferable in its ability to handle new molecules and conformations
without explicit prior parametrization: All local atomic properties are
predicted from ML, leaving only eight global parameters---optimized once and
for all across compounds. We validate IPML on various gas-phase dimers at and
away from equilibrium separation, where we obtain mean absolute errors between
0.4 and 0.7 kcal/mol for several chemically and conformationally diverse
datasets representative of non-covalent interactions in biologically-relevant
molecules. We further focus on hydrogen-bonded complexes---essential but
challenging due to their directional nature---where datasets of DNA base pairs
and amino acids yield an extremely encouraging 1.4 kcal/mol error. Finally, and
as a first look, we consider IPML in denser systems: water clusters,
supramolecular host-guest complexes, and the benzene crystal.Comment: 15 pages, 9 figure
Unraveling Substituent Effects on the Glass Transition Temperatures of Biorenewable Polyesters
Converting biomass-based feedstocks into polymers not only reduces our reliance on fossil fuels, but also furnishes multiple opportunities to design biorenewable polymers with targeted properties and functionalities. Here we report a series of high glass transition temperature (Tg up to 184 °C) polyesters derived from sugar-based furan derivatives as well as a joint experimental and theoretical study of substituent effects on their thermal properties. Surprisingly, we find that polymers with moderate steric hindrance exhibit the highest Tg values. Through a detailed Ramachandran-type analysis of the rotational flexibility of the polymer backbone, we find that additional steric hindrance does not necessarily increase chain stiffness in these polyesters. We attribute this interesting structure-property relationship to a complex interplay between methylinduced steric strain and the concerted rotations along the polymer backbone. We believe that our findings provide key insight into the relationship between structure and thermal properties across a range of synthetic polymers
Recommended from our members
Report on the sixth blind test of organic crystal structure prediction methods.
The sixth blind test of organic crystal structure prediction (CSP) methods has been held, with five target systems: a small nearly rigid molecule, a polymorphic former drug candidate, a chloride salt hydrate, a co-crystal and a bulky flexible molecule. This blind test has seen substantial growth in the number of participants, with the broad range of prediction methods giving a unique insight into the state of the art in the field. Significant progress has been seen in treating flexible molecules, usage of hierarchical approaches to ranking structures, the application of density-functional approximations, and the establishment of new workflows and `best practices' for performing CSP calculations. All of the targets, apart from a single potentially disordered Z' = 2 polymorph of the drug candidate, were predicted by at least one submission. Despite many remaining challenges, it is clear that CSP methods are becoming more applicable to a wider range of real systems, including salts, hydrates and larger flexible molecules. The results also highlight the potential for CSP calculations to complement and augment experimental studies of organic solid forms.The organisers and participants are very grateful to the crystallographers who supplied the candidate structures: Dr. Peter Horton (XXII), Dr. Brian Samas (XXIII), Prof. Bruce Foxman (XXIV), and Prof. Kraig Wheeler (XXV and XXVI). We are also grateful to Dr. Emma Sharp and colleagues at Johnson Matthey (Pharmorphix) for the polymorph screening of XXVI, as well as numerous colleagues at the CCDC for assistance in organising the blind test. Submission 2: We acknowledge Dr. Oliver Korb for numerous useful discussions. Submission 3: The Day group acknowledge the use of the IRIDIS High Performance Computing Facility, and associated support services at the University of Southampton, in the completion of this work. We acknowledge funding from the EPSRC (grants EP/J01110X/1 and EP/K018132/1) and the European Research Council under the European Unionâs Seventh Framework Programme (FP/2007-2013)/ERC through grant agreements n. 307358 (ERC-stG- 2012-ANGLE) and n. 321156 (ERC-AG-PE5-ROBOT). Submission 4: I am grateful to Mikhail Kuzminskii for calculations of molecular structures on Gaussian 98 program in the Institute of Organic Chemistry RAS. The Russian Foundation for Basic Research is acknowledged for financial support (14-03-01091). Submission 5: Toine Schreurs provided computer facilities and assistance. I am grateful to Matthew Habgood at AWE company for providing a travel grant. Submission 6: We would like to acknowledge support of this work by GlaxoSmithKline, Merck, and Vertex. Submission 7: The research was financially supported by the VIDI Research Program 700.10.427, which is financed by The Netherlands Organisation for Scientific Research (NWO), and the European Research Council (ERC-2010-StG, grant agreement n. 259510-KISMOL). We acknowledge the support of the Foundation for Fundamental Research on Matter (FOM). Supercomputer facilities were provided by the National Computing Facilities Foundation (NCF). Submission 8: Computer resources were provided by the Center for High Performance Computing at the University of Utah and the Extreme Science and Engineering Discovery Environment (XSEDE), supported by NSF grant number ACI-1053575. MBF and GIP acknowledge the support from the University of Buenos Aires and the Argentinian Research Council. Submission 9: We thank Dr. Bouke van Eijck for his valuable advice on our predicted structure of XXV. We thank the promotion office for TUT programs on advanced simulation engineering (ADSIM), the leading program for training brain information architects (BRAIN), and the information and media center (IMC) at Toyohashi University of Technology for the use of the TUT supercomputer systems and application software. We also thank the ACCMS at Kyoto University for the use of their supercomputer. In addition, we wish to thank financial supports from Conflex Corp. and Ministry of Education, Culture, Sports, Science and Technology. Submission 12: We thank Leslie Leiserowitz from the Weizmann Institute of Science and Geoffrey Hutchinson from the University of Pittsburgh for helpful discussions. We thank Adam Scovel at the Argonne Leadership Computing Facility (ALCF) for technical support. Work at Tulane University was funded by the Louisiana Board of Regents Award # LEQSF(2014-17)-RD-A-10 âToward Crystal Engineering from First Principlesâ, by the NSF award # EPS-1003897 âThe Louisiana Alliance for Simulation-Guided Materials Applications (LA-SiGMA)â, and by the Tulane Committee on Research Summer Fellowship. Work at the Technical University of Munich was supported by the Solar Technologies Go Hybrid initiative of the State of Bavaria, Germany. Computer time was provided by the Argonne Leadership Computing Facility (ALCF), which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357. Submission 13: This work would not have been possible without funding from Khalifa Universityâs College of Engineering. I would like to acknowledge Prof. Robert Bennell and Prof. Bayan Sharif for supporting me in acquiring the resources needed to carry out this research. Dr. Louise Price is thanked for her guidance on the use of DMACRYS and NEIGHCRYS during the course of this research. She is also thanked for useful discussions and numerous e-mail exchanges concerning the blind test. Prof. Sarah Price is acknowledged for her support and guidance over many years and for providing access to DMACRYS and NEIGHCRYS. Submission 15: The work was supported by the United Kingdomâs Engineering and Physical Sciences Research Council (EPSRC) (EP/J003840/1, EP/J014958/1) and was made possible through access to computational resources and support from the High Performance Computing Cluster at Imperial College London. We are grateful to Professor Sarah L. Price for supplying the DMACRYS code for use within CrystalOptimizer, and to her and her research group for support with DMACRYS and feedback on CrystalPredictor and CrystalOptimizer. Submission 16: R. J. N. acknowledges financial support from the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. [EP/J017639/1]. R. J. N. and C. J. P. acknowledge use of the Archer facilities of the U.K.âs national high-performance computing service (for which access was obtained via the UKCP consortium [EP/K014560/1]). C. J. P. also acknowledges a Leadership Fellowship Grant [EP/K013688/1]. B. M. acknowledges Robinson College, Cambridge, and the Cambridge Philosophical Society for a Henslow Research Fellowship. Submission 17: The work at the University of Delaware was supported by the Army Research Office under Grant W911NF-13-1- 0387 and by the National Science Foundation Grant CHE-1152899. The work at the University of Silesia was supported by the Polish National Science Centre Grant No. DEC-2012/05/B/ST4/00086. Submission 18: We would like to thank Constantinos Pantelides, Claire Adjiman and Isaac Sugden of Imperial College for their support of our use of CrystalPredictor and CrystalOptimizer in this and Submission 19. The CSP work of the group is supported by EPSRC, though grant ESPRC EP/K039229/1, and Eli Lilly. The PhD students support: RKH by a joint UCL Max-Planck Society Magdeburg Impact studentship, REW by a UCL Impact studentship; LI by the Cambridge Crystallographic Data Centre and the M3S Centre for Doctoral Training (EPSRC EP/G036675/1). Submission 19: The potential generation work at the University of Delaware was supported by the Army Research Office under Grant W911NF-13-1-0387 and by the National Science Foundation Grant CHE-1152899. Submission 20: The work at New York University was supported, in part, by the U.S. Army Research Laboratory and the U.S. Army Research Office under contract/grant number W911NF-13-1-0387 (MET and LV) and, in part, by the Materials Research Science and Engineering Center (MRSEC) program of the National Science Foundation under Award Number DMR-1420073 (MET and ES). The work at the University of Delaware was supported by the U.S. Army Research Laboratory and the U.S. Army Research Office under contract/grant number W911NF-13-1- 0387 and by the National Science Foundation Grant CHE-1152899. Submission 21: We thank the National Science Foundation (DMR-1231586), the Government of Russian Federation (Grant No. 14.A12.31.0003), the Foreign Talents Introduction and Academic Exchange Program (No. B08040) and the Russian Science Foundation, project no. 14-43-00052, base organization Photochemistry Center of the Russian Academy of Sciences. Calculations were performed on the Rurik supercomputer at Moscow Institute of Physics and Technology. Submission 22: The computational results presented have been achieved in part using the Vienna Scientific Cluster (VSC). Submission 24: The potential generation work at the University of Delaware was supported by the Army Research Office under Grant W911NF-13-1-0387 and by the National Science Foundation Grant CHE-1152899. Submission 25: J.H. and A.T. acknowledge the support from the Deutsche Forschungsgemeinschaft under the program DFG-SPP 1807. H-Y.K., R.A.D., and R.C. acknowledge support from the Department of Energy (DOE) under Grant Nos. DE-SC0008626. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DEAC02-05CH11231. Additional computational resources were provided by the Terascale Infrastructure for Groundbreaking Research in Science and Engineering (TIGRESS) High Performance Computing Center and Visualization Laboratory at Princeton University.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1107/S2052520616007447
Report on the sixth blind test of organic crystal-structure prediction methods
The sixth blind test of organic crystal-structure prediction (CSP) methods has been held, with five target systems: a small nearly rigid molecule, a polymorphic former drug candidate, a chloride salt hydrate, a co-crystal, and a bulky flexible molecule. This blind test has seen substantial growth in the number of submissions, with the broad range of prediction methods giving a unique insight into the state of the art in the field. Significant progress has been seen in treating flexible molecules, usage of hierarchical approaches to ranking structures, the application of density-functional approximations, and the establishment of new workflows and "best practices" for performing CSP calculations. All of the targets, apart from a single potentially disordered Z` = 2 polymorph of the drug candidate, were predicted by at least one submission. Despite many remaining challenges, it is clear that CSP methods are becoming more applicable to a wider range of real systems, including salts, hydrates and larger flexible molecules. The results also highlight the potential for CSP calculations to complement and augment experimental studies of organic solid forms
Software for the frontiers of quantum chemistry:An overview of developments in the Q-Chem 5 package
This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchangeâcorrelation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclearâelectronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an âopen teamwareâ model and an increasingly modular design
Recommended from our members
Unraveling substituent effects on the glass transition temperatures of biorenewable polyesters.
Converting biomass-based feedstocks into polymers not only reduces our reliance on fossil fuels, but also furnishes multiple opportunities to design biorenewable polymers with targeted properties and functionalities. Here we report a series of high glass transition temperature (Tg up to 184â°C) polyesters derived from sugar-based furan derivatives as well as a joint experimental and theoretical study of substituent effects on their thermal properties. Surprisingly, we find that polymers with moderate steric hindrance exhibit the highest Tg values. Through a detailed Ramachandran-type analysis of the rotational flexibility of the polymer backbone, we find that additional steric hindrance does not necessarily increase chain stiffness in these polyesters. We attribute this interesting structure-property relationship to a complex interplay between methyl-induced steric strain and the concerted rotations along the polymer backbone. We believe that our findings provide key insight into the relationship between structure and thermal properties across a range of synthetic polymers