87 research outputs found
Superfluid Helium On-Orbit Transfer (SHOOT) operatons
The in-flight tests and the operational sequences of the Superfluid Helium On-Orbit Transfer (SHOOT) experiment are outlined. These tests include the transfer of superfluid helium at a variety of rates, the transfer into cold and warm receivers, the operation of an extravehicular activity coupling, and tests of a liquid acquisition device. A variety of different types of instrumentation will be required for these tests. These include pressure sensors and liquid flow meters that must operate in liquid helium, accurate thermometry, two types of quantity gauges, and liquid-vapor sensors
Heat Switches for ADRs
Heat switches are key elements in the cyclic operation of Adiabatic Demagnetization Refrigerators (ADRs). Several of the types of heat switches that have been used for ADRs are described in this paper. Key elements in selection and design of these switches include not only ON/OFF switching ratio, but also method of actuation, size, weight, and structural soundness. Some of the trade-off are detailed in this paper
Using a Cold Radiometer to Measure Heat Loads and Survey Heat Leaks
We have developed an inexpensive cold radiometer for use in thermal/vacuum chambers to measure heat loads, characterize emissivity and specularity of surfaces and to survey areas to evaluate stray heat loads. We report here the results of two such tests for the James Webb Space Telescope to measure heat loads and effective emissivities of 2 major pieces of optical ground support equipment that will be used in upcoming thermal vacuum testing of the Telescope
Cryogenic Testing of the Thermal Vacuum Chamber and Ground Support Equipment for the James Webb Space Telescope in Chamber A at Johnson Space Center
The James Webb Space Telescope (JWST) is the largest cryogenic instrument telescope to be developed for space flight. The telescope will be passively cooled to 50 K and the instrument package will be at 40 K with the mid-infrared instrument at 6 K. The final cryogenic test of the Optical Telescope Element (OTE) and Integrated Science Instrument Module (ISIM) as an assembly (OTE + ISIM OTIS) will be performed in the largest 15 K chamber in the world, Chamber A at Johnson Space Center. The planned duration of this test will be 100 days in the middle of 2017. Needless to say, this ultimate test of OTIS, the cryogenic portion of JWST will be crucial in verifying the end-to-end performance of JWST. A repeat of this test would not only be expensive, but would delay the launch schedule (currently October 2018). Therefore a series of checkouts and verifications of the chamber and ground support equipment were planned and carried out between 2012 and 2016. This paper will provide a top-level summary of those tests, trades in coming up with the test plan, as well as some details of individual issues that were encountered and resolved in the course of testing
Use of Cold Radiometers in Several Thermal/Vacuum Tests
We have developed a low cost low temperature broadband radiometer for use with low temperature tests as a diagnostic tool for measuring stray thermal radiation and remote measurement of material properties. So far these radiometers have been used in two large thermal/vacuum tests for the James Webb Space Telescope (JWST) Project. In the first test the radiometers measured stray radiation in a test of part of the JWST sunshield, and in the second test the radiometers were used to measure the reflectivity and specularity of black Z307 painted aluminum walls on a 25 K cooled shroud. These results will be presented as well as plans for future tests to measure the residual energy through a baffled aperture in the shroud and other stray thermal energy measurements
FIRI - a Far-Infrared Interferometer
Half of the energy ever emitted by stars and accreting objects comes to us in
the FIR waveband and has yet to be properly explored. We propose a powerful
Far-InfraRed Interferometer mission, FIRI, to carry out high-resolution imaging
spectroscopy in the FIR. This key observational capability is essential to
reveal how gas and dust evolve into stars and planets, how the first luminous
objects in the Universe ignited, how galaxies formed, and when super-massive
black holes grew. FIRI will disentangle the cosmic histories of star formation
and accretion onto black holes and will trace the assembly and evolution of
quiescent galaxies like our Milky Way. Perhaps most importantly, FIRI will
observe all stages of planetary system formation and recognise Earth-like
planets that may harbour life, via its ability to image the dust structures in
planetary systems. It will thus address directly questions fundamental to our
understanding of how the Universe has developed and evolved - the very
questions posed by ESA's Cosmic Vision.Comment: Proposal developed by a large team of astronomers from Europe, USA
and Canada and submitted to the European Space Agency as part of "Cosmic
Vision 2015-2025
Longitudinal phase-space manipulation with beam-driven plasma wakefields
The development of compact accelerator facilities providing high-brightness
beams is one of the most challenging tasks in field of next-generation compact
and cost affordable particle accelerators, to be used in many fields for
industrial, medical and research applications. The ability to shape the beam
longitudinal phase-space, in particular, plays a key role to achieve high-peak
brightness. Here we present a new approach that allows to tune the longitudinal
phase-space of a high-brightness beam by means of a plasma wakefields. The
electron beam passing through the plasma drives large wakefields that are used
to manipulate the time-energy correlation of particles along the beam itself.
We experimentally demonstrate that such solution is highly tunable by simply
adjusting the density of the plasma and can be used to imprint or remove any
correlation onto the beam. This is a fundamental requirement when dealing with
largely time-energy correlated beams coming from future plasma accelerators
Flight Development for Cryogenic Fluid Management in Support of Exploration Missions
This paper describes the results of the "Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology" study. The purposes of this study were to identify cryogenic fluids management technologies requiring low gravity flight experiments to bring to technology readiness level (TRL) 5-6; to study many possible flight experiment options; and to develop near-term low-cost flight experiment concepts to mature core technologies of refueling. A total of twenty-five white papers were prepared in the course of this study. Each white paper is briefly summarized and relevant references cited. A total of 90 references are cited
Optical Design of the Origins Space Telescope
This paper discusses the optical design of the Origins Space Telescope. Origins is one of four large missions under study in preparation for the 2020 Decadal Survey in Astronomy and Astrophysics. Sensitive to the mid- and far-infrared spectrum (between 2.8 and 588 m), Origins sets out to answer a number of important scientific questions by addressing NASAs three key science goals in astrophysics. The Origins telescope has a 5.9 m diameter primary mirror and operates at f/14. The large on-axis primary consists of 18 keystone segments of two different prescriptions arranged in two annuli (six inner and twelve outer segments) that together form a circular aperture in the goal of achieving a symmetric point spread function. To accommodate the 46 x 15 arcminute full field of view of the telescope at the design wavelength of = 30 m, a three-mirror anastigmat configuration is used. The design is diffraction-limited across its instruments fields of view. A brief discussion of each of the three baselined instruments within the Instrument Accommodation Module (IAM) is presented: 1) Origins Survey Spectrometer (OSS), 2) Mid-infrared Spectrometer, Camera (MISC) transit spectrometer channel, and 3) Far-Infrared Polarimeter/Imager (FIP). In addition, the up scope options for the observatory are laid out as well including a fourth instrument: the Heterodyne Receiver for Origins (HERO)
Amniotic-fluid ingestion by parturient rats enhances pregnancy-mediated analgesia
Amniotic fluid and placenta contain a substance (POEF, for Placental Opioid-Enhancing Factor) that, when ingested, enhances opioid-mediated analgesia in nonpregnant rats; ingestion of the substance by rats not experiencing opioid-mediated analgesia, however, does not produce analgesia. It is highly likely that periparturitional analgesia-enhancement is a significant benefit of ingestion of the afterbirth (placentophagia) during delivery. Here we report that prepartum ingestion of amniotic fluid (via orogastric infusion) does indeed enhance the endogenous-opioid-mediated analgesia evident at the end of pregnancy and during delivery; that the degree of enhancement is greater with 0.75 ml than with 0.25 ml, and that the prepartum enhancement of analgesia can be blocked with the opioid antagonist naloxone
- …