325 research outputs found
Hand-Tool-Tissue Interaction Forces in Neurosurgery for Haptic Rendering
Haptics provides sensory stimuli that represent the interaction with a virtual or telemanipulated object, and it is considered a valuable navigation and manipulation tool during tele-operated surgical procedures. Haptic feedback can be provided to the user via cutaneous information and kinesthetic feedback. Sensory subtraction removes the kinesthetic component of the haptic feedback, having only the cutaneous component provided to the user. Such a technique guarantees a stable haptic feedback loop, while it keeps the transparency of the tele-operation system high, which means that the system faithfully replicates and render back the user's directives. This work focuses on checking whether the interaction forces during a bench model neurosurgery operation can lie in the solely cutaneous perception of the human finger pads. If this assumption is found true, it would be possible to exploit sensory subtraction techniques for providing surgeons with feedback from neurosurgery. We measured the forces exerted to surgical tools by three neurosurgeons performing typical actions on a brain phantom, using contact force sensors, whilst the forces exerted by the tools to the phantom tissue were recorded using a load cell placed under the brain phantom box. The measured surgeon-tool contact forces were 0.01 - 3.49 N for the thumb and 0.01 - 6.6 N for index and middle finger, whereas the measured tool- tissue interaction forces were from six to eleven times smaller than the contact forces, i.e., 0.01 - 0.59 N. The measurements for the contact forces fit the range of the cutaneous sensitivity for the human finger pad, thus, we can say that, in a tele-operated robotic neurosurgery scenario, it would possible to render forces at the fingertip level by conveying haptic cues solely through the cutaneous channel of the surgeon's finger pads. This approach would allow high transparenc
Ablative brain surgery : an overview
Background: Ablative therapies have been used for the treatment of neurological disorders for many years. They have been used both for creating therapeutic lesions within dysfunctional brain circuits and to destroy intracranial tumors and space-occupying masses. Despite the introduction of new effective drugs and neuromodulative techniques, which became more popular and subsequently caused brain ablation techniques to fall out favor, recent technological advances have led to the resurgence of lesioning with an improved safety profile. Currently, the four main ablative techniques that are used for ablative brain surgery are radiofrequency thermoablation, stereotactic radiosurgery, laser interstitial thermal therapy and magnetic resonance-guided focused ultrasound thermal ablation. Object: To review the physical principles underlying brain ablative therapies and to describe their use for neurological disorders. Methods: The literature regarding the neurosurgical applications of brain ablative therapies has been reviewed. Results: Ablative treatments have been used for several neurological disorders, including movement disorders, psychiatric disorders, chronic pain, drug-resistant epilepsy and brain tumors. Conclusions: There are several ongoing efforts to use novel ablative therapies directed towards the brain. The recent development of techniques that allow for precise targeting, accurate delivery of thermal doses and real-time visualization of induced tissue damage during the procedure have resulted in novel techniques for cerebral ablation such as magnetic resonance-guided focused ultrasound or laser interstitial thermal therapy. However, older techniques such as radiofrequency thermal ablation or stereotactic radiosurgery still have a pivotal role in the management of a variety of neurological disorders
Ultrasounds induce blood-brain barrier opening across a sonolucent polyolefin plate in an in vitro isolated brain preparation
The blood-brain barrier (BBB) represents a major obstacle to the delivery of drugs to the central nervous system. The combined use of low-intensity pulsed ultrasound waves and intravascular microbubbles (MB) represents a promising solution to this issue, allowing reversible disruption of the barrier. In this study, we evaluate the feasibility of BBB opening through a biocompatible, polyolefin-based plate in an in vitro whole brain model. Twelve in vitro guinea pig brains were employed; brains were insonated using a planar transducer with or without interposing the polyolefin plate during arterial infusion of MB. Circulating MBs were visualized with an ultrasonographic device with a linear probe. BBB permeabilization was assessed by quantifying at confocal microscopy the extravasation of FITC-albumin perfused after each treatment. US-treated brains displayed BBB permeabilization exclusively in the volume under the US beam; no significant differences were observed between brains insonated with or without the polyolefin plate. Control brains not perfused with MB did not show signs of FITC-albumin extravasation. Our preclinical study suggests that polyolefin cranial plate could be implanted as a skull replacement to maintain craniotomic windows and perform post-surgical repeated BBB opening with ultrasound guidance to deliver therapeutic agents to the central nervous system
Origins and clinical implications of the brain tumor stem cell hypothesis
With the advent of the cancer stem cell hypothesis, the field of cancer research has experienced a revolution in how we think of and approach cancer. The discovery of "brain tumor stem cells" has offered an explanation for several long-standing conundrums on why brain tumors behave the way they do to treatment. Despite the great amount of research that has been done in order to understand the molecular aspects of malignant gliomas, the prognosis of brain tumors remains dismal. The slow progress in extending the survival of patients with malignant CNS neoplasms is very likely due to poor understanding of the cell of origin in these tumors. This review article discusses the progress in our understanding of brain tumor stem cells as the cell of origin in brain cancers. We review the different proposed mechanisms of how brain tumor stem cells may originate, the intracellular pathways disrupted in the pathogenesis of BTSCs, the molecular markers used to identify BTSCs, the molecular mechanisms of cancer initiation and progression, and finally the clinical implications of this research
Intraoperative cerebral ultrasound for third ventricle colloid cyst removal: case report
To assess the usefulness of intraoperative Ultrasound (ioUS) and Echo-Color-Doppler (ECD) for the surgical removal of a specific deep-sited lesion.
Case report of a woman underwent surgery of a third ventricle colloid cyst removal.
The ioUS technique depicted the deep intraventricular lesion and all the anatomical structures surrounding the lesion; helping us defining the best trajectory for the safest surgical removal.
In our experience ioUS and ECD have demonstrated to be a reliable and useful intraoperative tool in neurosurgery, not only for superficial tumors but for deep intraventicular lesions as well
Surgical Treatment of Spinal Meningiomas in the Elderly (≥75 Years): Which Factors Affect the Neurological Outcome? An International Multicentric Study of 72 Cases
(1) Background: With the increasing life expectancy in the Western world, an increasing number of old patients presents with spinal meningioma. Considering the benign nature of these tumors, the functional outcome remains of great importance, since more people reach old age in general conditions of well-being and satisfactory autonomy. (2) Methods: We conducted an international multicenter retrospective study to investigate demographic, clinical and radiological data in a population of elderly patients (≥75 years of age) undergoing surgery for SM from January 2000 to December 2020 in four European referral centers. The aim was to identify prognostic and predictive factors for a good postoperative functional outcome. (3) Results: 72 patients were included in the study. Complete tumor resection (Simpson I or II) was achieved in 67 (95.7%) cases. Intraoperative complications were reported in 7 (9.9%) patients while postoperative complications were found in 12 (16.7%). An excellent general postoperative status (McCormick I and II) was achieved in 65.3%. Overall, surgical resection had a good impact on patients’ functional outcome (86.1% either showing an improvement or maintaining a good preoperative status). Uni- and multivariate analyses found that both age and preoperative modified McCormick independently correlated with relative outcome (coeff = −0.058, p = 0.0251; coeff = 0.597, p < 0.0001) and with postoperative status (coeff = 0.058, p = 0.02507; coeff = 0.402, p = 0.00027), respectively. (4) Conclusions: Age and preoperative modified McCormick were found to be independent prognostic factors. Nevertheless, advanced age (≥75), per se, did not seem to contraindicate surgery, even in those with severe preoperative neurological deficits. The functional results sustain the need for surgical resection of SM in the elderly
- …