17 research outputs found
Global Atmospheric Budget of Acetone: Air‐Sea Exchange and the Contribution to Hydroxyl Radicals
Acetone is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere. The oceans impose a strong control on atmospheric acetone, yet the oceanic fluxes of acetone remain poorly constrained. In this work, the global budget of acetone is evaluated using two global models: CAM‐chem and GEOS‐Chem. CAM‐chem uses an online air‐sea exchange framework to calculate the bidirectional oceanic acetone fluxes, which is coupled to a data‐oriented machine‐learning approach. The machine‐learning algorithm is trained using a global suite of seawater acetone measurements. GEOS‐Chem uses a fixed surface seawater concentration of acetone to calculate the oceanic fluxes. Both model simulations are compared to airborne observations from a recent global‐scale, multiseasonal campaign, the NASA Atmospheric Tomography Mission (ATom). We find that both CAM‐chem and GEOS‐Chem capture the measured acetone vertical distributions in the remote atmosphere reasonably well. The combined observational and modeling analysis suggests that (i) the ocean strongly regulates the atmospheric budget of acetone. The tropical and subtropical oceans are mostly a net source of acetone, while the high‐latitude oceans are a net sink. (ii) CMIP6 anthropogenic emission inventory may underestimate acetone and/or its precursors in the Northern Hemisphere. (iii) The MEGAN biogenic emissions model may overestimate acetone and/or its precursors, and/or the biogenic oxidation mechanisms may overestimate the acetone yields. (iv) The models consistently overestimate acetone in the upper troposphere‐lower stratosphere over the Southern Ocean in austral winter. (v) Acetone contributes up to 30–40% of hydroxyl radical production in the tropical upper troposphere/lower stratosphere
Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease
Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
Burden of disease and costs of exposure to endocrine disrupting chemicals in the European Union: an updated analysis.
A previous report documented that endocrine disrupting chemicals contribute substantially to certain forms of disease and disability. In the present analysis, our main objective was to update a range of health and economic costs that can be reasonably attributed to endocrine disrupting chemical exposures in the European Union, leveraging new burden and disease cost estimates of female reproductive conditions from accompanying report. Expert panels evaluated the epidemiologic evidence, using adapted criteria from the WHO Grading of Recommendations Assessment, Development and Evaluation Working Group, and evaluated laboratory and animal evidence of endocrine disruption using definitions recently promulgated by the Danish Environmental Protection Agency. The Delphi method was used to make decisions on the strength of the data. Expert panels consensus was achieved for probable (>20%) endocrine disrupting chemical causation for IQ loss and associated intellectual disability; autism; attention deficit hyperactivity disorder; endometriosis; fibroids; childhood obesity; adult obesity; adult diabetes; cryptorchidism; male infertility, and mortality associated with reduced testosterone. Accounting for probability of causation, and using the midpoint of each range for probability of causation, Monte Carlo simulations produced a median annual cost of €163 billion (1.28% of EU Gross Domestic Product) across 1000 simulations. We conclude that endocrine disrupting chemical exposures in the EU are likely to contribute substantially to disease and dysfunction across the life course with costs in the hundreds of billions of Euros per year. These estimates represent only those endocrine disrupting chemicals with the highest probability of causation; a broader analysis would have produced greater estimates of burden of disease and costs
Recommended from our members
Burden of disease and costs of exposure to endocrine disrupting chemicals in the European Union: an updated analysis.
A previous report documented that endocrine disrupting chemicals contribute substantially to certain forms of disease and disability. In the present analysis, our main objective was to update a range of health and economic costs that can be reasonably attributed to endocrine disrupting chemical exposures in the European Union, leveraging new burden and disease cost estimates of female reproductive conditions from accompanying report. Expert panels evaluated the epidemiologic evidence, using adapted criteria from the WHO Grading of Recommendations Assessment, Development and Evaluation Working Group, and evaluated laboratory and animal evidence of endocrine disruption using definitions recently promulgated by the Danish Environmental Protection Agency. The Delphi method was used to make decisions on the strength of the data. Expert panels consensus was achieved for probable (>20%) endocrine disrupting chemical causation for IQ loss and associated intellectual disability; autism; attention deficit hyperactivity disorder; endometriosis; fibroids; childhood obesity; adult obesity; adult diabetes; cryptorchidism; male infertility, and mortality associated with reduced testosterone. Accounting for probability of causation, and using the midpoint of each range for probability of causation, Monte Carlo simulations produced a median annual cost of €163 billion (1.28% of EU Gross Domestic Product) across 1000 simulations. We conclude that endocrine disrupting chemical exposures in the EU are likely to contribute substantially to disease and dysfunction across the life course with costs in the hundreds of billions of Euros per year. These estimates represent only those endocrine disrupting chemicals with the highest probability of causation; a broader analysis would have produced greater estimates of burden of disease and costs
Recommended from our members
Comparison of different real time VOC measurement techniques in a ponderosa pine forest
Volatile organic compound (VOC) mixing ratios measured by five independent instruments are compared at a forested site dominated by ponderosa pine (Pinus Ponderosa) during the BEACHON-ROCS field study in summer 2010. The instruments included a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS), a Proton Transfer Reaction Quadrupole Mass Spectrometer (PTR-MS), a Fast Online Gas-Chromatograph coupled to a Mass Spectrometer (GC/MS; TOGA), a Thermal Dissociation Chemical Ionization Mass Spectrometer (PAN-CIMS) and a Fiber Laser-Induced Fluorescence Instrument (FILIF). The species discussed in this comparison include the most important biogenic VOCs and a selected suite of oxygenated VOCs that are thought to dominate the VOC reactivity at this particular site as well as typical anthropogenic VOCs that showed low mixing ratios at this site. Good agreement was observed for methanol, the sum of the oxygenated hemiterpene 2-methyl-3-buten-2-ol (MBO) and the hemiterpene isoprene, acetaldehyde, the sum of acetone and propanal, benzene and the sum of methyl ethyl ketone (MEK) and butanal. Measurements of the above VOCs conducted by different instruments agree within 20%. The ability to differentiate the presence of toluene and cymene by PTR-TOF-MS is tested based on a comparison with GC-MS measurements, suggesting a study-average relative contribution of 74% for toluene and 26% for cymene. Similarly, 2-hydroxy-2-methylpropanal (HMPR) is found to interfere with the sum of methyl vinyl ketone and methacrolein (MVK + MAC) using PTR-(TOF)-MS at this site. A study-average relative contribution of 85% for MVK + MAC and 15% for HMPR was determined. The sum of monoterpenes measured by PTR-MS and PTR-TOF-MS was generally 20-25% higher than the sum of speciated monoterpenes measured by TOGA, which included α-pinene, β-pinene, camphene, carene, myrcene, limonene, cineole as well as other terpenes. However, this difference is consistent throughout the study, and likely points to an offset in calibration, rather than a difference in the ability to measure the sum of terpenes. The contribution of isoprene relative to MBO inferred from PTR-MS and PTR-TOF-MS was smaller than 12% while GC-MS data suggested an average of 21% of isoprene relative to MBO. This comparison demonstrates that the current capability of VOC measurements to account for OH reactivity associated with the measured VOCs is within 20%. © Author(s) 2013
Comparison of different real time VOC measurement techniques in a ponderosa pine forest
Volatile organic compound (VOC) mixing ratios measured by five independent instruments are compared at a forested site dominated by ponderosa pine (Pinus Ponderosa) during the BEACHON-ROCS field study in summer 2010. The instruments included a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS), a Proton Transfer Reaction Quadrupole Mass Spectrometer (PTR-MS), a Fast Online Gas-Chromatograph coupled to a Mass Spectrometer (GC/MS; TOGA), a Thermal Dissociation Chemical Ionization Mass Spectrometer (PAN-CIMS) and a Fiber Laser-Induced Fluorescence Instrument (FILIF). The species discussed in this comparison include the most important biogenic VOCs and a selected suite of oxygenated VOCs that are thought to dominate the VOC reactivity at this particular site as well as typical anthropogenic VOCs that showed low mixing ratios at this site. Good agreement was observed for methanol, the sum of the oxygenated hemiterpene 2-methyl-3-buten-2-ol (MBO) and the hemiterpene isoprene, acetaldehyde, the sum of acetone and propanal, benzene and the sum of methyl ethyl ketone (MEK) and butanal. Measurements of the above VOCs conducted by different instruments agree within 20%. The ability to differentiate the presence of toluene and cymene by PTR-TOF-MS is tested based on a comparison with GC-MS measurements, suggesting a study-average relative contribution of 74% for toluene and 26% for cymene. Similarly, 2-hydroxy-2-methylpropanal (HMPR) is found to interfere with the sum of methyl vinyl ketone and methacrolein (MVK + MAC) using PTR-(TOF)-MS at this site. A study-average relative contribution of 85% for MVK + MAC and 15% for HMPR was determined. The sum of monoterpenes measured by PTR-MS and PTR-TOF-MS was generally 20-25% higher than the sum of speciated monoterpenes measured by TOGA, which included α-pinene, β-pinene, camphene, carene, myrcene, limonene, cineole as well as other terpenes. However, this difference is consistent throughout the study, and likely points to an offset in calibration, rather than a difference in the ability to measure the sum of terpenes. The contribution of isoprene relative to MBO inferred from PTR-MS and PTR-TOF-MS was smaller than 12% while GC-MS data suggested an average of 21% of isoprene relative to MBO. This comparison demonstrates that the current capability of VOC measurements to account for OH reactivity associated with the measured VOCs is within 20%. © Author(s) 2013
Recommended from our members
Aircraft measurements of BrO, IO, glyoxal, NO<sub>2</sub>, H<sub>2</sub>O, O<sub>2</sub>–O<sub>2</sub> and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements
Tropospheric chemistry of halogens and organic carbon over tropical oceans
modifies ozone and atmospheric aerosols, yet atmospheric models remain
largely untested for lack of vertically resolved measurements of bromine
monoxide (BrO), iodine monoxide (IO) and small oxygenated hydrocarbons like
glyoxal (CHOCHO) in the tropical troposphere. BrO, IO, glyoxal, nitrogen
dioxide (NO<sub>2</sub>), water vapor (H<sub>2</sub>O) and O<sub>2</sub>–O<sub>2</sub> collision
complexes (O<sub>4</sub>) were measured by the University of Colorado Airborne Multi-AXis Differential
Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument, aerosol
extinction by high spectral resolution lidar (HSRL), in situ aerosol size
distributions by an ultra high sensitivity aerosol spectrometer (UHSAS) and
in situ H<sub>2</sub>O by vertical-cavity surface-emitting laser (VCSEL) hygrometer. Data are presented from two research flights (RF12, RF17) aboard
the National Science Foundation/National Center for Atmospheric
Research Gulfstream V aircraft over the tropical Eastern Pacific Ocean (tEPO) as
part of the "Tropical Ocean tRoposphere Exchange of Reactive halogens and
Oxygenated hydrocarbons" (TORERO) project (January/February 2012). We assess the
accuracy of O<sub>4</sub> slant column density (SCD) measurements in the presence
and absence of aerosols. Our O<sub>4</sub>-inferred aerosol extinction
profiles at 477 nm agree within 6% with HSRL in the boundary layer and
closely resemble the renormalized profile shape of Mie calculations
constrained by UHSAS at low (sub-Rayleigh) aerosol extinction in the free
troposphere. CU AMAX-DOAS provides a flexible choice of geometry, which we
exploit to minimize the SCD in the reference spectrum (SCD<sub>REF</sub>, maximize
signal-to-noise ratio) and to test the robustness of BrO, IO and glyoxal
differential SCDs. The RF12 case study was conducted in pristine marine and
free tropospheric air. The RF17 case study was conducted above the NOAA RV <i>Ka'imimoana</i> (TORERO cruise, KA-12-01) and provides independent validation
data from ship-based in situ cavity-enhanced DOAS and MAX-DOAS. Inside the
marine boundary layer (MBL) no BrO was detected (smaller than 0.5 pptv), and
0.2–0.55 pptv IO and 32–36 pptv glyoxal were observed. The near-surface
concentrations agree within 30% (IO) and 10% (glyoxal) between ship
and aircraft. The BrO concentration strongly increased with altitude to 3.0 pptv at 14.5 km (RF12, 9.1 to 8.6° N; 101.2 to 97.4° W).
At 14.5 km, 5–10 pptv NO<sub>2</sub> agree with model predictions and demonstrate
good control over separating tropospheric from stratospheric absorbers
(NO<sub>2</sub> and BrO). Our profile retrievals have 12–20 degrees of freedom
(DoF) and up to 500 m vertical resolution. The tropospheric BrO vertical column density (VCD) was 1.5 × 10<sup>13</sup> molec cm<sup>−2</sup> (RF12)
and at least 0.5 × 10<sup>13</sup> molec cm<sup>−2</sup> (RF17, 0–10 km, lower limit). Tropospheric IO VCDs correspond to
2.1 × 10<sup>12</sup> molec cm<sup>−2</sup> (RF12) and 2.5 × 10<sup>12</sup> molec cm<sup>−2</sup>
(RF17) and glyoxal VCDs of 2.6 × 10<sup>14</sup> molec cm<sup>−2</sup> (RF12) and 2.7 × 10<sup>14</sup> molec cm<sup>−2</sup> (RF17).
Surprisingly, essentially all BrO as well as
the dominant IO and glyoxal VCD fraction was located above 2 km (IO:
58 ± 5%, 0.1–0.2 pptv; glyoxal: 52 ± 5%, 3–20 pptv). To our
knowledge there are no previous vertically resolved measurements of BrO and
glyoxal from aircraft in the tropical free troposphere. The atmospheric
implications are briefly discussed. Future studies are necessary to better
understand the sources and impacts of free tropospheric halogens and
oxygenated hydrocarbons on tropospheric ozone, aerosols, mercury oxidation
and the oxidation capacity of the atmosphere
Recommended from our members
Evaluating high-resolution forecasts of atmospheric CO and CO2 from a global prediction system during KORUS-AQ field campaign
© Author(s) 2018. Accurate and consistent monitoring of anthropogenic combustion is imperative because of its significant health and environmental impacts, especially at city-to-regional scale. Here, we assess the performance of the Copernicus Atmosphere Monitoring Service (CAMS) global prediction system using measurements from aircraft, ground sites, and ships during the Korea-United States Air Quality (KORUS-AQ) field study in May to June 2016. Our evaluation focuses on CAMS CO and CO2 analyses as well as two higher-resolution forecasts (16 and 9km horizontal resolution) to assess their capability in predicting combustion signatures over east Asia. Our results show a slight overestimation of CAMS CO2 with a mean bias against airborne CO2 measurements of 2.2, 0.7, and 0.3ppmv for 16 and 9km CO2 forecasts, and analyses, respectively. The positive CO2 mean bias in the 16km forecast appears to be consistent across the vertical profile of the measurements. In contrast, we find a moderate underestimation of CAMS CO with an overall bias against airborne CO measurements of -19.2 (16km), -16.7 (9km), and -20.7ppbv (analysis). This negative CO mean bias is mostly seen below 750hPa for all three forecast/analysis configurations. Despite these biases, CAMS shows a remarkable agreement with observed enhancement ratios of CO with CO2 over the Seoul metropolitan area and over the West (Yellow) Sea, where east Asian outflows were sampled during the study period. More efficient combustion is observed over Seoul (dCO dCO2 Combining double low line 9ppbvppmv-1) compared to the West Sea (dCO dCO2 Combining double low line 28ppbvppmv-1). This "combustion signature contrast" is consistent with previous studies in these two regions. CAMS captured this difference in enhancement ratios (Seoul: 8-12ppbvppmv-1, the West Sea: ∼ 30ppbvppmv-1) regardless of forecast/analysis configurations. The correlation of CAMS CO bias with CO2 bias is relatively high over these two regions (Seoul: 0.64-0.90, the West Sea: ∼ 0.80) suggesting that the contrast captured by CAMS may be dominated by anthropogenic emission ratios used in CAMS. However, CAMS shows poorer performance in terms of capturing local-to-urban CO and CO2 variability. Along with measurements at ground sites over the Korean Peninsula, CAMS produces too high CO and CO2 concentrations at the surface with steeper vertical gradients (∼ 0.4ppmvhPa-1 for CO2 and 3.5ppbvhPa-1 for CO) in the morning samples than observed (∼ 0.25ppmvhPa-1 for CO2 and 1.7ppbvhPa-1 for CO), suggesting weaker boundary layer mixing in the model. Lastly, we find that the combination of CO analyses (i.e., improved initial condition) and use of finer resolution (9km vs. 16km) generally produces better forecasts