30 research outputs found
Amprenavir and efavirenz pharmacokinetics before and after the addition of nelfinavir, indinavir, ritonavir, or saquinavir in seronegative individuals
Adult AIDS Clinical Trials Group 5043 examined pharmacokinetic (PK) interactions between amprenavir (APV) and efavirenz (EFV) both by themselves and when nelfinavir (NFV), indinavir (IDV), ritonavir (RTV), or saquinavir (SQV) is added. A PK study was conducted after the administration of single doses of APV (day 0). Subjects (n = 56) received 600 mg of EFV every 24 h (q24h) for 10 days and restarted APV with EFV for days 11 to 13 with a PK study on day 14. A second protease inhibitor (PI) (NFV, 1,250 mg, q12h; IDV, 1,200 mg, q12h; RTV, 100 mg, q12h; or SQV, 1,600 mg, q12h) was added to APV and EFV on day 15, and a PK study was conducted on day 21. Controls continued APV and EFV without a second PI. Among subjects, the APV areas under the curve (AUCs) on days 0, 14, and 21 were compared using the Wilcoxon signed-rank test. Ninety-percent confidence intervals around the geometric mean ratios (GMR) were calculated. APV AUCs were 46% to 61% lower (median percentage of AUC) with EFV (day 14 versus day 0; P values of <0.05). In the NFV, IDV, and RTV groups, day 21 APV AUCs with EFV were higher than AUCs for EFV alone. Ninety-percent confidence intervals around the GMR were 3.5 to 5.3 for NFV (P < 0.001), 2.8 to 4.5 for IDV (P < 0.001), and 7.8 to 11.5 for RTV (P = 0.004). Saquinavir modestly increased the APV AUCs (GMR, 1.0 to 1.4; P = 0.106). Control group AUCs were lower on day 21 compared to those on day 14 (GMR, 0.7 to 1.0; P = 0.042). African-American non-Hispanics had higher day 14 efavirenz AUCs than white non-Hispanics. We conclude that EFV lowered APV AUCs, but nelfinavir, indinavir, or ritonavir compensated for EFV induction
Interaction of Disulfiram with Antiretroviral Medications: Efavirenz Increases While Atazanavir Decreases Disulfiram Effect on Enzymes of Alcohol Metabolism
Background and Objectives
Alcohol abuse complicates treatment of HIV disease and is linked to poor outcomes. Alcohol pharmacotherapies, including disulfiram (DIS), are infrequently utilized in co-occurring HIV and alcohol use disorders possibly related to concerns about drug interactions between antiretroviral (ARV) medications and DIS.
Method
This pharmacokinetics study (n = 40) examined the effect of DIS on efavirenz (EFV), ritonavir (RTV), or atazanavir (ATV) and the effect of these ARV medications on DIS metabolism and aldehyde dehydrogenase (ALDH) activity which mediates the DIS-alcohol reaction.
Results
EFV administration was associated with decreased S-Methyl-N-N-diethylthiocarbamate (DIS carbamate), a metabolite of DIS (p = .001) and a precursor to the metabolite responsible for ALDH inhibition, S-methyl-N,N-diethylthiolcarbamate sulfoxide (DETC–MeSO). EFV was associated with increased DIS inhibition of ALDH activity relative to DIS alone administration possibly as a result of EFV-associated induction of CYP 3A4 which metabolizes the carbamate to DETC–MeSO (which inhibits ALDH). Conversely, ATV co-administration reduced the effect of DIS on ALDH activity possibly as a result of ATV inhibition of CYP 3A4. DIS administration had no significant effect on any ARV studied.
Discussion/Conclusions
ATV may render DIS ineffective in treatment of alcoholism.
Future Directions
DIS is infrequently utilized in HIV-infected individuals due to concerns about adverse interactions and side effects. Findings from this study indicate that, with ongoing clinical monitoring, DIS should be reconsidered given its potential efficacy for alcohol and potentially, cocaine use disorders, that may occur in this population. (Am J Addict 2014;23:137–144
Compartmental pharmacokinetic analysis of oral amprenavir with secondary peaks
Amprenavir is a protease inhibitor that has been shown to have secondary peaks postulated to be due to enterohepatic recycling. We propose a model to describe the pharmacokinetics of amprenavir which accommodates the secondary peak(s). A total of 82 healthy human immunodeficiency virus (HIV)-seronegative subjects were administered a single 600-mg dose of amprenavir as part of adult AIDS Clinical Trials Group protocol A5043. Serial blood samples were obtained over 24 h. Samples were analyzed for amprenavir and fit to a compartmental model using ADAPT II software, with all relevant parameters conditional with respect to bioavailability. The model accommodated secondary peaks by incorporating clearance out of the central compartment with delayed instantaneous release back into the gut compartment. The data were weighted by the inverse of the estimated measurement error variance; model discrimination was determined using Akaike's Information Criteria. A total of 76 subjects were evaluable in the study analysis. The data were best fit by a two-compartment model, with 98.7% of the subjects demonstrating a secondary peak. Amprenavir had a mean total clearance of 1.163 liters/h/kg of body weight (0.7), a central volume of distribution of 1.208 liters/kg (0.8), a peripheral volume of distribution of 8.2 liters/kg (0.81), and distributional clearance of 0.04 liters/h/kg (0.81). The time to the secondary peak was 7.86 h (0.17), and clearance into a recycling compartment was 0.111 liters/kg/h (0.74). Amprenavir pharmacokinetics has been well described using a two-compartment model with clearance to a recycling compartment and release back into the gut. The nature of the secondary peaks may be an important consideration for the interpretation of amprenavir plasma concentrations during therapeutic drug monitoring
Recommended from our members
Boceprevir and Antiretroviral Pharmacokinetic Interactions in HIV/HCV Co-infected Persons: AIDS Clinical Trials Group Study A5309s
Objective: The objective of this study was to determine the magnitude of drug interactions between the hepatitis C virus (HCV) protease inhibitor boceprevir (BOC) and antiretroviral (ARV) agents in persons with HIV/HCV co-infection. Methods: Participants taking two nucleos(t)ide analogs with either efavirenz, raltegravir, or ritonavir-boosted atazanavir, darunavir, or lopinavir underwent intensive pharmacokinetic (PK) sampling for ARV 2 weeks before (week 2) and 2 weeks after initiating BOC (week 6) and for BOC at week 6. Geometric mean ratios (GMRs) and 90% confidence intervals (CIs) were used to compare ARV PK at weeks 2 and 6 and BOC PK at week 6 to historical data (HD) in healthy volunteers and HCV mono-infected patients. Results: ARV PK was available for 55 participants. BOC reduced atazanavir and darunavir exposures by 30 and 42%, respectively. BOC increased raltegravir maximum concentration (C max) by 71%. BOC did not alter efavirenz PK. BOC PK was available for 53 participants. BOC exposures were similar in these HIV/HCV co-infected participants compared with HD in healthy volunteers, but BOC minimum concentrations (C min) were lower with all ARV agents (by 34–73%) compared with HD in HCV mono-infected patients. Conclusions: Effects of BOC on ARV PK in these HIV/HCV co-infected individuals were similar to prior studies in healthy volunteers. However, some differences in the effects of ARV on BOC PK were observed, indicating the magnitude of interactions may differ in HCV-infected individuals versus healthy volunteers. Findings highlight the need to conduct interaction studies with HCV therapies in the population likely to receive the combination
Recommended from our members
Integration of atazanavir into an existing liquid chromatography UV method for protease inhibitors : Validation and application
Recommended from our members
Population pharmacokinetics of Delavirdine and N-delavirdine in HIV-infected individuals
Two decades (1998 to 2018) of collaborative human immunodeficiency virus clinical pharmacology capacity building in a resource constrained setting.
While important advances have been made in the prevention and treatment of Human Immunodeficiency Virus (HIV) infection, limited expertise and resource constraints to effectively manage rollout of HIV programs often contribute to poor treatment outcomes in Sub-Saharan Africa. In 1998, the University of Zimbabwe (UZ) and the University at Buffalo, State University of New York (UB), developed a collaborative clinical pharmacology capacity building program in Zimbabwe to train the next generation of HIV researchers and support rollout of the national HIV program. The collaboration was funded by research and training grants that were competitively acquired through United States of America government funding mechanisms, between 1998 and 2016. Thirty-eight research fellows were trained and a specialty clinical pharmacology laboratory was established during this period. Knowledge and skills transfer were achieved through faculty and student exchange visits. Scientific dissemination output included sixty-two scholarly publications that influenced three national policies and provided development of guidelines for strategic leadership for an HIV infection-patient adherence support group. The clinical pharmacology capacity building program trained fellows that were subsequently incorporated into the national technical working group at the Ministry of Health and Child Care, who are responsible for optimizing HIV treatment guidelines in Zimbabwe. Despite serious economic challenges, consistent collaboration between UZ and UB strengthened UZ faculty scholarly capacity, retention of HIV clinical research workforce was achieved, and the program made additional contributions toward optimization of antiretroviral therapy in Zimbabwe
Development and validation of a high performance liquid chromatography method to determine nevirapine in plasma in a resource-limited setting.
BACKGROUND: There are several instances where nevirapine pharmacokinetic monitoring may be useful, such as in special populations or pharmacokinetic drug interaction studies that require the ascertainment of nevirapine pharmacokinetics in the sub-Saharan region. OBJECTIVES: The main aim of this study was to produce a validated, sustainable and relevant nevirapine assay method that meets bio-analytical regulatory requirements. METHODS: The developed method utilised a Waters 2795 Alliance high performance liquid chromatography system with a 2996 photo diode array detector, an Atlantis dC18 5 micron, 3.9 mm × 150 mm analytical column and a gradient flow rate of 1 mL/min. Ultraviolet detection data were collected from 210 nm to 400 nm, extracted at 260 nm, and processed for nevirapine and internal standard peak height responses. RESULTS: The method proved to be linear (R2 0.995), precise (+1.92% - +9.69%) and accurate (-9.70% - 12.0%). Recovery for the analyte and internal standard was between 98.8% and 114%. The method showed good specificity as no interferences were caused by common African traditional medicines, anti-tuberculosis medications or other concomitant antiretrovirals nor endogenous components. CONCLUSION: The method is reproducible, relevant to our setting and uses considerably low plasma volumes with preservation of some consumables, a desirable key factor in a resource-limited setting