4 research outputs found

    Extensive pollen flow in two ecologically contrasting populations of Populus trichocarpa

    No full text
    Pollen-mediated gene flow was measured in two populations of black cottonwood using direct (paternity analysis) and indirect (correlated paternity) methods. The Marchel site was an area with an approximate radius of 250m in a large continuous stand growing in a mesic habitat in western Oregon. In contrast, the Vinson site was an area with a radius of approximately 10 km and consisted of small, disjunct and isolated stands in the high desert of eastern Oregon. Pollen immigration was extensive in both populations, and was higher in the Marchel site (0.54 ± 0.02) than in the substantially larger and more isolated Vinson site (0.32 ± 0.02). Pollen pool differentiation among mothers was approximately five times stronger in the Vinson population (ΦFT = 0.253, N= 27 mothers) than in the Marchel population (ΦFT = 0.052, N = 5 mothers). Pollen dispersal was modelled using a mixed dispersal curve that incorporated pollen immigration. Predicted pollination frequencies generated based on this curve were substantially more accurate than those based on the widely used exponential power dispersal curve. Male neighbourhood sizes (sensu Wright 1946) estimated using paternity analysis and pollen pool differentiation were remarkably similar. They were three to five times smaller in the Vinson population, which reflected the substantial ecological and demographic differences between the two populations. When the same mathematical function was used, applying direct and indirect methods resulted in similar pollen dispersal curves, thus confirming the value of indirect methods as a viable lower-cost alternative to paternity analysi

    Structure and expression of duplicate AGAMOUS orthologs in poplar

    No full text
    To investigate the homeotic systems underlying floral development in a dioecious tree, and to provide tools for the manipulation of floral development, we have isolated two Populus trichocarpa genes, PTAG1 and PTAG2, homologous to the Arabidopsis floral homeotic gene AGAMOUS (AG). PTAG1 and PTAG2 are located on separate linkage groups, but their non-coding regions are highly similar, consistent with a phylogenetically recent duplication. Intron/exon structure is conserved in relation to AG and the Antirrhinum AG orthologue, PLENA (PLE), and low-stringency Southern analysis demonstrated the absence of additional genes in the poplar genome with significant PTAG1/2 homology. PTAG1 and PTAG2 exhibit an AG-like floral expression pattern, and phylogenetic analysis of the AG subfamily strongly supports evolutionary orthology to C-class organ identity genes. The high degree of similarity shared by PTAG1 and PTAG2 in both sequence (89% amino acid identity) and expression indicates that they are unlikely to be functionally associated with specification of tree gender. Unexpectedly, PTAG transcripts were consistently detected in vegetative tissues

    Tree Biotechnology with Special Reference to Species of Fragile Ecosystems and Arid Environments

    No full text
    corecore