30 research outputs found

    Multiple Recurrent De Novo CNVs, Including Duplications of the 7q11.23 Williams Syndrome Region, Are Strongly Associated with Autism

    Get PDF
    SummaryWe have undertaken a genome-wide analysis of rare copy-number variation (CNV) in 1124 autism spectrum disorder (ASD) families, each comprised of a single proband, unaffected parents, and, in most kindreds, an unaffected sibling. We find significant association of ASD with de novo duplications of 7q11.23, where the reciprocal deletion causes Williams-Beuren syndrome, characterized by a highly social personality. We identify rare recurrent de novo CNVs at five additional regions, including 16p13.2 (encompassing genes USP7 and C16orf72) and Cadherin 13, and implement a rigorous approach to evaluating the statistical significance of these observations. Overall, large de novo CNVs, particularly those encompassing multiple genes, confer substantial risks (OR = 5.6; CI = 2.6–12.0, p = 2.4 × 10-7). We estimate there are 130–234 ASD-related CNV regions in the human genome and present compelling evidence, based on cumulative data, for association of rare de novo events at 7q11.23, 15q11.2-13.1, 16p11.2, and Neurexin 1

    EVIDENCE THAT HUMAN AND PORCINE INSULIN DIFFERENTLY AFFECT THE HUMAN INSULIN-RECEPTOR - STUDIES WITH MONOCLONAL ANTIINSULIN RECEPTOR ANTIBODIES

    No full text
    Binding studies have been carried out with radioiodinated monoclonal antibodies directed to various epitopes of the insulin receptor in order to detect differences between human and porcine insulin in the interaction with the human insulin receptor. Human insulin was more effective that porcine insulin at inhibiting the binding of I-125-MA-5 to IM-9 cells, Hep-2 human larynx cells and human placenta membranes. On the contrary, human and porcine insulin showed similar inhibitory effect on the binding of two other labeled anti-insulin receptor monoclonal antibodies, thus ruling out the possibility that results were due to experimental artifacts. Although several interpretations are possible, data reported suggest that human insulin and porcine insulin might differently affect the insulin receptor, even if, the biological significance of these findings remains unknown
    corecore