77 research outputs found

    Uncommon Blepharitis

    Get PDF
    Blepharitis is a common chronic inflammatory condition affecting the eyelid margins; the pathophysiology of blepharitis is complex and not fully understood. The disease is anatomically divided into anterior (inflammation of eyelashes) and posterior (meibomian gland dysfunction) types. Diagnosis relies on clinical examination, revealing characteristic features like scurf, vascular changes, and meibomian gland dysfunction. The main goals of blepharitis treatment are symptom relief, recurrence prevention, and complication risk minimization. Treatment options include lid hygiene, topical and systemic antibiotics, topical corticosteroids, and omega-3 supplements. However, it is important to highlight reported cases of blepharitis as side effects of systemic therapies, particularly in the context of chemotherapy, bortezomib, cetuximab, TNFα inhibitors, and dupilumab. It is crucial to monitor patients undergoing such treatments regularly and attentively in order to promptly set up adequate supportive therapy. Of even more importance is future research on the pathophysiological mechanisms responsible for the occurrence of these ocular side effects in order to find a nosological cure for the issue

    Preventing and Managing Iatrogenic Dry Eye Disease during the Entire Surgical Pathway: A Study Focusing on Patients Undergoing Cataract Surgery

    Get PDF
    Patient expectations for cataract surgery are continuously increasing, and dry eye disease (DED) represents a major cause of patient dissatisfaction in eye surgery. The present opinion paper aims to provide useful insights to improve the entire pathway of a patient undergoing cataract surgery, from the preoperative setting to the postoperative one. The available evidence from main clinical trials published on this topic is presented in association with experience-based points of view by the authors. Ocular surface disease (OSD) is common in patients presenting for cataract surgery, and more than half of these patients have DED and meibomian gland dysfunction (MGD), even in the absence of symptoms. Therefore, there is a need to encourage preoperative assessments for the risk of DED development or worsening in all patients as a routine approach to cataract surgery. New all-in-one diagnostic machines allow for fast and noninvasive screening of the ocular surface status. Once a preoperative diagnosis of DED/OSD is reached, ocular surface optimization should be obtained before surgery. In the case of unresolved OSD, the decision to delay surgery should be considered. The surgical procedure can be optimized by avoiding large incisions, limiting microscope light intensity and exposure, and avoiding an aspirating speculum or preserved eye drops. Postoperatively, the continued avoidance of preserved agents is advisable, as well as a limited exposure to epitheliotoxic antibiotics and nonsteroidal anti-inflammatory drugs. Short-term, preservative-free, soft corticosteroids may be useful for patients with extensive or persistent inflammation

    Sensor-embedded face masks for detection of volatiles in breath: a proof of concept study

    Get PDF
    The correlation between breath volatilome and health is prompting a growing interest in the development of sensors optimized for breath analysis. On the other hand, the outbreak of COVID-19 evidenced that breath is a vehicle of infection; thus, the introduction of low-cost and disposable devices is becoming urgent for a clinical implementation of breath analysis. In this paper, a proof of concept about the functionalization of face masks is provided. Porphyrin-based sensors are among the most performant devices for breath analysis, but since porphyrins are scarcely conductive, they make use of costly and bulky mass or optical transducers. To overcome this drawback, we introduce here a hybrid material made of conducting polymer and porphyrins. The resulting material can be easily deposited on the internal surface of standard FFP face masks producing resistive sensors that retain the chemical sensitivity of porphyrins implementing their combinatorial selectivity for the identification of volatile compounds and the classification of complex samples. The sensitivity of sensors has been tested with respect to a set of seven volatile compounds representative of diverse chemical families. Sensors react to all compounds but with a different sensitivity pattern. Functionalized face masks have been tested in a proof-of-concept test aimed at identifying changes of breath due to the ingestion of beverages (coffee and wine) and solid food (banana- and mint-flavored candies). Results indicate that sensors can detect volatile compounds against the background of normal breath VOCs, suggesting the possibility to embed sensors in face masks for extensive breath analysis

    ROS in cancer therapy: the bright side of the moon.

    Get PDF
    Reactive oxygen species (ROS) constitute a group of highly reactive molecules that have evolved as regulators of important signaling pathways. It is now well accepted that moderate levels of ROS are required for several cellular functions, including gene expression. The production of ROS is elevated in tumor cells as a consequence of increased metabolic rate, gene mutation and relative hypoxia, and excess ROS are quenched by increased antioxidant enzymatic and nonenzymatic pathways in the same cells. Moderate increases of ROS contribute to several pathologic conditions, among which are tumor promotion and progression, as they are involved in different signaling pathways and induce DNA mutation. However, ROS are also able to trigger programmed cell death (PCD). Our review will emphasize the molecular mechanisms useful for the development of therapeutic strategies that are based on modulating ROS levels to treat cancer. Specifically, we will report on the growing data that highlight the role of ROS generated by different metabolic pathways as Trojan horses to eliminate cancer cells

    One Soul and Several Faces of Evaporative Dry Eye Disease

    Get PDF
    The ocular surface system interacts with, reacts with, and adapts to the daily continuous insults, trauma, and stimuli caused by direct exposure to the atmosphere and environment. Several tissue and para-inflammatory mechanisms interact to guarantee such an ultimate function, hence maintaining its healthy homeostatic equilibrium. Evaporation seriously affects the homeostasis of the system, thereby becoming a critical trigger in the pathogenesis of the vicious cycle of dry eye disease (DED). Tear film lipid composition, distribution, spreading, and efficiency are crucial factors in controlling water evaporation, and are involved in the onset of the hyperosmolar and inflammatory cascades of DED. The structure of tear film lipids, and subsequently the tear film, have a considerable impact on tears’ properties and main functions, leading to a peculiar clinical picture and specific management

    A leopard cannot change its spots: Unexpected products from the vilsmeier reaction on 5,10,15-tritolylcorrole

    Get PDF
    The reaction of 5,10,15-tritolylcorrole with 3-dimethylaminoacrolein (3-DMA) and POCl3 gives a further example of the rebel reactivity of this contracted macrocycle. While no evidence was obtained for the formation of the expected -acrolein corrole, the inner core substituted N21,N22-3-formylpropylcorrole and the 10-acrolein isocorrole were the reaction products. By increasing the temperature or the amount of the Vilsmeier reagent, the 10-isocorrole became the unique reaction product. The formation of the isocorrole by electrophilic attack of the Vilsmeier reagent to the 10-position of the corrole is unprecedented in the porphyrinoids field and it could pave the way for a novel route to the preparation of stable isocorrole

    The crosstalk between prostate cancer and microbiota inflammation: Nutraceutical products are useful to balance this interplay?

    Get PDF
    The human microbiota shows pivotal roles in urologic health and disease. Emerging studies indicate that gut and urinary microbiomes can impact several urological diseases, both benignant and malignant, acting particularly on prostate inflammation and prostate cancer. Indeed, the microbiota exerts its influence on prostate cancer initiation and/or progression mechanisms through the regulation of chronic inflammation, apoptotic processes, cytokines, and hormonal production in response to different pathogenic noxae. Additionally, therapies’ and drugs’ responses are influenced in their efficacy and tolerability by microbiota composition. Due to this complex potential interconnection between prostate cancer and microbiota, exploration and understanding of the involved relationships is pivotal to evaluate a potential therapeutic application in clinical practice. Several natural compounds, moreover, seem to have relevant effects, directly or mediated by microbiota, on urologic health, posing the human microbiota at the crossroad between prostatic inflammation and prostate cancer development. Here, we aim to analyze the most recent evidence regarding the possible crosstalk between prostate, microbiome, and inflammation

    Activation of Kv7 potassium channels inhibits intracellular Ca2+ increases triggered by TRPV1-mediated pain-inducing stimuli in F11 immortalized sensory neurons

    Get PDF
    Kv7.2-Kv7.5 channels mediate the M-current (IKM), a K+-selective current regulating neuronal excitability and representing an attractive target for pharmacological therapy against hyperexcitability diseases such as pain. Kv7 channels interact functionally with transient receptor potential vanilloid 1 (TRPV1) channels activated by endogenous and/or exogenous pain-inducing substances, such as bradykinin (BK) or capsaicin (CAP), respectively; however, whether Kv7 channels of specific molecular composition provide a dominant contribution in BK- or CAP-evoked responses is yet unknown. To this aim, Kv7 transcripts expression and function were assessed in F11 immortalized sensorial neurons, a cellular model widely used to assess nociceptive molecular mechanisms. In these cells, the effects of the pan-Kv7 activator retigabine were investigated, as well as the effects of ICA-27243 and (S)-1, two Kv7 activators acting preferentially on Kv7.2/Kv7.3 and Kv7.4/Kv7.5 channels, respectively, on BK- and CAP-induced changes in intracellular Ca2+ concentrations ([Ca2+]i). The results obtained revealed the expression of transcripts of all Kv7 genes, leading to an IKM-like current. Moreover, all tested Kv7 openers inhibited BK- and CAP-induced responses by a similar extent (~60%); at least for BK-induced Ca2+ responses, the potency of retigabine (IC50~1 µM) was higher than that of ICA-27243 (IC50~5 µM) and (S)-1 (IC50~7 µM). Altogether, these results suggest that IKM activation effectively counteracts the cellular processes triggered by TRPV1-mediated pain-inducing stimuli, and highlight a possible critical contribution of Kv7.4 subunits

    Kaempferol, myricetin and fisetin in prostate and bladder cancer: A systematic review of the literature

    Get PDF
    Prostate and bladder cancer represent the two most frequently diagnosed genito-urinary malignancies. Diet has been implicated in both prostate and bladder cancer. Given their prolonged latency and high prevalence rates, both prostate and bladder cancer represent attractive candidates for dietary preventive measures, including the use of nutritional supplements. Flavonols, a class of flavonoids, are commonly found in fruit and vegetables and are known for their protective effect against diabetes and cardiovascular diseases. Furthermore, a higher dietary intake of flavonols was associated with a lower risk of both bladder and prostate cancer in epidemiological studies. In this systematic review, we gathered all available evidence supporting the anti-cancer potential of selected flavonols (kaempferol, fisetin and myricetin) against bladder and prostate cancer. A total of 21, 15 and 7 pre-clinical articles on bladder or prostate cancer reporting on kaempferol, fisetin and myricetin, respectively, were found, while more limited evidence was available from animal models and epidemiological studies or clinical trials. In conclusion, the available evidence supports the potential use of these flavonols in prostate and bladder cancer, with a low expected toxicity, thus providing the rationale for clinical trials that explore dosing, settings for clinical use as well as their use in combination with other pharmacological and non-pharmacological interventions

    Sex Hormones Related Ocular Dryness in Breast Cancer Women

    Get PDF
    Background: Dry eye syndrome (DES) is strictly connected to systemic and topical sex hormones. Breast cancer treatment, the subsequent hormonal therapy, the subsequent hyperandrogenism and the early sudden menopause, may be responsible for ocular surface system failure and its clinical manifestation as dry eye disease. This local dryness is part of the breast cancer iatrogenic dryness, which affects overall mucosal tissue in the fragile population of those with breast cancer. Methods: A literature review regarding the role of sex hormone changes and systemic hormonal replacement treatments (SHRT) in DES available on PubMed and Web of Science was made without any restriction of language. Results: Androgens exert their role on the ocular surface supporting meibomian gland function and exerting a pro-sebaceous effect. Estrogen seems to show a pro/inflammatory role on the ocular surface, while SHRT effects on dry eye are still not well defined, determining apparently contradictory consequences on the ocular surface homeostasis. The role of sex hormones on dry eye pathogenesis is most likely the result of a strict crosstalk between the protective androgens effects and the androgen-modulating effects of estrogens on the meibomian glands. Conclusions: Patients with a pathological or iatrogenic hormonal imbalance, such as in the case of breast cancer, should be assessed for dry eye disease, as well as systemic dryness, in order to restore their social and personal quality of life
    • …
    corecore