11,116 research outputs found

    Complexity growth rates for AdS black holes in massive gravity and f(R)f(R) gravity

    Full text link
    The "complexity = action" duality states that the quantum complexity is equal to the action of the stationary AdS black holes within the Wheeler-DeWitt patch at late time approximation. We compute the action growth rates of the neutral and charged black holes in massive gravity and the neutral, charged and Kerr-Newman black holes in f(R)f(R) gravity to test this conjecture. Besides, we investigate the effects of the massive graviton terms, higher derivative terms and the topology of the black hole horizon on the complexity growth rate.Comment: 11 pages, no figur

    Spin Hall effect in spin-valley coupled monolayer transition-metal dichalcogenides

    Get PDF
    We study both the intrinsic and extrinsic spin Hall effect in spin-valley coupled monolayers of transition metal dichalcogenides. We find that whereas the skew-scattering contribution is suppressed by the large band gap, the side-jump contribution is comparable to the intrinsic one with opposite sign in the presence of scalar and magnetic scattering. Intervalley scattering tends to suppress the side-jump contribution due to the loss of coherence. By tuning the ratio of intra- to intervalley scattering, the spin Hall conductivity shows a sign change in hole-doped samples. Multiband effect in other doping regime is considered, and it is found that the sign change exists in the heavily hole-doped regime, but not in the electron-doped regime

    Berry phase modification to the energy spectrum of excitons

    Get PDF
    By quantizing the semiclassical motion of excitons, we show that the Berry curvature can cause an energy splitting between exciton states with opposite angular momentum. This splitting is determined by the Berry curvature flux through the k\bm k-space area spanned by the relative motion of the electron-hole pair in the exciton wave function. Using the gapped two-dimensional Dirac equation as a model, we show that this splitting can be understood as an effective spin-orbit coupling effect. In addition, there is also an energy shift caused by other "relativistic" terms. Our result reveals the limitation of the venerable hydrogenic model of excitons, and highlights the importance of the Berry curvature in the effective mass approximation.Comment: 4.5 pages, 2 figures, reference updated and minor change
    • …
    corecore