2,763 research outputs found

    Universal control of quantum subspaces and subsystems

    Full text link
    We describe a broad dynamical-algebraic framework for analyzing the quantum control properties of a set of naturally available interactions. General conditions under which universal control is achieved over a set of subspaces/subsystems are found. All known physical examples of universal control on subspaces/systems are related to the framework developed here.Comment: 4 Pages RevTeX, Some typos fixed, references adde

    Computation on a Noiseless Quantum Code and Symmetrization

    Get PDF
    Let H{\cal H} be the state-space of a quantum computer coupled with the environment by a set of error operators spanning a Lie algebra L.{\cal L}. Suppose L{\cal L} admits a noiseless quantum code i.e., a subspace C⊂H{\cal C}\subset{\cal H} annihilated by L.{\cal L}. We show that a universal set of gates over C\cal C is obtained by any generic pair of L{\cal L}-invariant gates. Such gates - if not available from the outset - can be obtained by resorting to a symmetrization with respect to the group generated by L.{\cal L}. Any computation can then be performed completely within the coding decoherence-free subspace.Comment: One result added, to appear in Phys. Rev. A (RC) 4 pages LaTeX, no figure

    Quantum Entanglement in Fermionic Lattices

    Full text link
    The Fock space of a system of indistinguishable particles is isomorphic (in a non-unique way) to the state-space of a composite i.e., many-modes, quantum system. One can then discuss quantum entanglement for fermionic as well as bosonic systems. We exemplify the use of this notion -central in quantum information - by studying some e.g., Hubbard,lattice fermionic models relevant to condensed matter physics.Comment: 4 Pages LaTeX, 1 TeX Figure. Presentation improved, title changed. To appear in PR

    Quantum Computing of Classical Chaos: Smile of the Arnold-Schrodinger Cat

    Get PDF
    We show on the example of the Arnold cat map that classical chaotic systems can be simulated with exponential efficiency on a quantum computer. Although classical computer errors grow exponentially with time, the quantum algorithm with moderate imperfections is able to simulate accurately the unstable chaotic classical dynamics for long times. The algorithm can be easily implemented on systems of a few qubits.Comment: revtex, 4 pages, 4 figure
    • …
    corecore