132 research outputs found

    High Temperature and Humidity Affect Pollen Viability and Longevity in Olea europaea L.

    Get PDF
    Olea europaea L. is a crop typical of the Mediterranean area that has an important role in economy, society, and culture of this region. Climate change is expected to have significant impact on this crop, which is typically adapted to certain pedo-climatic characteristics of restricted geographic areas. In this scenario, the aim of this study was to evaluate the time-course response of pollen viability to different combinations of temperature and humidity. The study was performed comparing flowering time and pollen functionality of O. europaea from twelve cultivars growing at the same site belonging to the Campania olive collection in Italy. Pollen was incubated at 12 °C, 22 °C, and 36 °C in combination with 50% RH or 100% RH treatments for 5 days. The results highlighted that a drastic loss of pollen viability occurs when pollen is subjected to a combination of high humidity and high temperature, whereas 50% RH had less impact on pollen thermotolerance, because most cultivars preserved a high pollen viability over time. In the ongoing climate change scenario, it is critical to assess the effect of increasing temperatures on sensitive reproductive traits such as pollen viability to predict possible reduction in crop yield. Moreover, the results highlighted that the effect of temperature increase on pollen thermotolerance should be evaluated in combination with other environmental factors such as humidity conditions. The screening of olive cultivars based on pollen thermotolerance is critical in the ongoing climate change scenario, especially considering that the economic value of this species relies on successful fertilization and embryo development, and also that production cycle of Olea europaea can be longer than a hundred years

    Mechanical harvesting of oil olives by trunk shaker with a reversed umbrella interceptor

    Get PDF
    Trunk shakers are primarily used for the mechanical harvesting of oil olives in intensive orchards. The objective of this trial was to determine the efficiency of mechanical harvesting of olives with a self-propelled trunk shaker with a reversed umbrella interceptor (model F3, SICMA, Catanzaro, Italy), from adult trees of two autochthonous cultivars, ‘Ortice’ and ‘Ortolana’, growing in southern Italy with 6 × 6 m spacing and trained to the vase system. The main characteristics of the trunk shaker were: an engine power of 77 Kw (105 CV), a very-high-frequency vibrating head (1800-2000 vibrations/min), a self-braking system and a 6-meter diameter umbrella opening. The worksite consisted of two workers, one for maneuvering the harvesting machine, and the other for handling the olives. Mechanical harvesting was carried on 30 November 2006 when the fruits of ‘Ortice’ and ‘Ortolana’ had a weight and detachment force around 2.8 g and 3.1 N and 3.8 g and 4.6 N, respectively, and the fruit drop was around 14% and 10%, respectively. Both cultivars had a good production (26.06 and 21.18 kg/tree). The mechanical harvesting yield (percentage of mechanically harvested olives) was very high, reaching values around 97% in both cultivars. Moreover, the low number of workers, the reduced time for the operation (2.5 min/tree), the good yield/tree and the high quantity of harvested fruit allowed a very high work productivity to be obtained: around 302 kg/h/worker for ‘Ortice’ and 246 kg/h/worker for ‘Ortolana’. The quality of the oils extracted from the harvested olives met the requirements set by European law for extra virgin olive oils. The results indicate that the use of a trunk shaker with a reversed umbrella can be an efficient solution for mechanical harvesting of the ‘Ortice’ and ‘Ortolana’ cultivars in southern Italy

    Comparison of volatile organic compounds, quality, and nutritional parameters from local Italian and international apple cultivars

    Get PDF
    Apple cultivars ‘Annurca’ and ‘Limoncella’ are grown locally in the Campania region of Italy and are valued for their distinctive flavour and characteristics, including a high content of nutritionally important bioactive compounds. However, apples are typically stored chilled for several months before consumption, so it is important to assess if the valuable characteristics are still present after postharvest storage. Here, we compare the quality, nutritional parameters, and aroma of these two cultivars with two widely grown international cultivars, ‘Golden Delicious’ and ‘Fuji’, after 60 days of storage. The aroma profiles of all four apples were analysed using thermal desorption and gas chromatography–time-of-flight mass spectrometry. We show that the local cultivars are distinct from the international cultivars in their bioactive compound content and their antioxidant activity. ‘Limoncella’ shows high sugar content, which may be acting as a cryoprotectant during storage, and high total phenolics in the flesh, which is of nutritional interest. We identified 104 volatile organic compounds (VOCs) and showed that the overall aroma profile is distinct for each cultivar, containing 11 published odorant compounds. The ‘Annurca’ profile is uniquely low in esters. Seven VOCs retain good discrimination across the four cultivars and, together with the quality and nutritional data, separate the two local cultivars from the international cultivars by hierarchical clustering. Overall, the data emphasize the unique characteristics of the two local cultivars and their value

    Butyrate Regulates Liver Mitochondrial Function, Efficiency, and Dynamics in Insulin-Resistant Obese Mice

    Get PDF
    Fatty liver, oxidative stress, and mitochondrial dysfunction are key pathophysiological features of insulin resistance and obesity. Butyrate, produced by fermentation in the large intestine by gut microbiota, and its synthetic derivative, the N-(1-carbamoyl-2-phenyl-ethyl) butyramide, FBA, have been demonstrated to be protective against insulin resistance and fatty liver. Here, hepatic mitochondria were identified as the main target of the beneficial effect of both butyrate-based compounds in reverting insulin resistance and fat accumulation in diet-induced obese mice. In particular, butyrate and FBA improved respiratory capacity and fatty acid oxidation, activated the AMPK-acetyl-CoA carboxylase pathway, and promoted inefficient metabolism, as shown by the increase in proton leak. Both treatments consistently increased utilization of substrates, especially fatty acids, leading to the reduction of intracellular lipid accumulation and oxidative stress. Finally, the shift of the mitochondrial dynamic toward fusion by butyrate and FBA resulted in the improvement not only of mitochondrial cell energy metabolism but also of glucose homeostasis. In conclusion, butyrate and its more palatable synthetic derivative, FBA, modulating mitochondrial function, efficiency, and dynamics, can be considered a new therapeutic strategy to counteract obesity and insulin resistance

    Moderne tecniche di coltivazione della mela Annurca in Campania.

    Full text link
    • …
    corecore