14,721 research outputs found
Random laser from engineered nanostructures obtained by surface tension driven lithography
The random laser emission from the functionalized thienyl-S,S-dioxide
quinquethiophene (T5OCx) in confined patterns with different shapes is
demonstrated. Functional patterning of the light emitter organic material in
well defined features is obtained by spontaneous molecular self-assembly guided
by surface tension driven (STD) lithography. Such controlled supramolecular
nano-aggregates act as scattering centers allowing the fabrication of
one-component organic lasers with no external resonator and with desired shape
and efficiency. Atomic force microscopy shows that different geometric pattern
with different supramolecular organization obtained by the lithographic process
tailors the coherent emission properties by controlling the distribution and
the size of the random scatterers
Statistical Reliability Estimation of Microprocessor-Based Systems
What is the probability that the execution state of a given microprocessor running a given application is correct, in a certain working environment with a given soft-error rate? Trying to answer this question using fault injection can be very expensive and time consuming. This paper proposes the baseline for a new methodology, based on microprocessor error probability profiling, that aims at estimating fault injection results without the need of a typical fault injection setup. The proposed methodology is based on two main ideas: a one-time fault-injection analysis of the microprocessor architecture to characterize the probability of successful execution of each of its instructions in presence of a soft-error, and a static and very fast analysis of the control and data flow of the target software application to compute its probability of success. The presented work goes beyond the dependability evaluation problem; it also has the potential to become the backbone for new tools able to help engineers to choose the best hardware and software architecture to structurally maximize the probability of a correct execution of the target softwar
Experimental evidence of replica symmetry breaking in random lasers
Spin-glass theory is one of the leading paradigms of complex physics and
describes condensed matter, neural networks and biological systems, ultracold
atoms, random photonics, and many other research fields. According to this
theory, identical systems under identical conditions may reach different states
and provide different values for observable quantities. This effect is known as
Replica Symmetry Breaking and is revealed by the shape of the probability
distribution function of an order parameter named the Parisi overlap. However,
a direct experimental evidence in any field of research is still missing. Here
we investigate pulse-to-pulse fluctuations in random lasers, we introduce and
measure the analogue of the Parisi overlap in independent experimental
realizations of the same disordered sample, and we find that the distribution
function yields evidence of a transition to a glassy light phase compatible
with a replica symmetry breaking.Comment: 10 pages, 5 figure
DENDRITIC CELL DIFFERENTIATION BLOCKED BY PRIMARY EFFUSION LYMPHOMA-RELEASED FACTORS IS PARTIALLY RESTORED BY INHIBITION OF P38 MAPK
To better understand the molecular mechanisms underlying the dendritic cell (DC) defects in cancer, we analyzed which signaling pathway is implicated in the abnormal monocyte differentiation into DC determined by the presence of Primary effusion lymphoma (PEL) released factors. Our results indicate that the DC, obtained in this condition, together with phenotypic abnormalities and reduced allostimulatory function, showed hyperphosphorylation of signal transducer and activator of transcription 3 (STAT3) and p38 mitogen-activated protein kinase (MAPK) molecules, in comparison to the DC differentiated in the absence of PEL-released factors. The inhibition of p38 MAPK but not of STAT3 phosphorylation, with specific inhibitors, was able to revert the effect of the PEL-released factors on the DC phenotype. This study suggests that p38 MAPK signaling pathway is an important contributor to the abnormal differentiation of DC in PEL
The regions of the sequence most exposed to the solvent within the amyloidogenic state of a protein initiate the aggregation process.
Formation of misfolded aggregates is an essential part of what proteins can do. The process of protein aggregation is central to many human diseases and any aggregating event needs to be prevented within a cell and in protein design. In order to aggregate, a protein needs to unfold its native state, at least partially. The conformational state that is prone to aggregate is difficult to study, due to its aggregating potential and heterogeneous nature. Here, we use a systematic approach of limited proteolysis, in combination with electrospray ionisation mass spectrometry, to investigate the regions that are most flexible and solvent-exposed within the native, ligand-bound and amyloidogenic states of muscle acylphosphatase (AcP), a protein previously shown to form amyloid fibrils in the presence of trifluoroethanol. Seven proteases with different degrees of specificity have been used for this purpose. Following exposure to the aggregating conditions, a number of sites along the sequence of AcP become susceptible to proteolytic digestion. The pattern of proteolytic cleavages obtained under these conditions is considerably different from that of the native and ligand-bound conformations and includes a portion within the N-terminal tail of the protein (residues 6-7), the region of the sequence 18-23 and the position 94 near the C terminus. There is a significant overlap between the regions of the sequence found to be solvent-exposed from the present study and those previously identified to be critical in the rate-determining steps of aggregation from protein engineering approaches. This indicates that a considerable degree of solvent exposure is a feature of the portions of a protein that initiate the process of aggregation
Resting state functional thalamic connectivity abnormalities in patients with post-stroke sleep apnoea: a pilot case-control study
OBJECTIVE: Sleep apnoea is common
after stroke, and has adverse effects on the
clinical outcome of affected cases. Its pathophysiological
mechanisms are only partially known. Increases
in brain connectivity after stroke might influence
networks involved in arousal modulation
and breathing control. The aim of this study was to
investigate the resting state functional MRI thalamic
hyper connectivity of stroke patients affected
by sleep apnoea (SA) with respect to cases not
affected, and to healthy controls (HC).
PATIENTS AND METHODS: A series of stabilized
strokes were submitted to 3T resting state
functional MRI imaging and full polysomnography.
The ventral-posterior-lateral thalamic nucleus was
used as seed.
RESULTS: At the between groups comparison
analysis, in SA cases versus HC, the regions significantly
hyper-connected with the seed were
those encoding noxious threats (frontal eye
field, somatosensory association, secondary visual
cortices). Comparisons between SA cases
versus those without SA, revealed in the former
group significantly increased connectivity with
regions modulating the response to stimuli independently
to their potentiality of threat (prefrontal,
primary and somatosensory association, superolateral
and medial-inferior temporal, associative
and secondary occipital ones). Further
significantly functionally hyper connections were
documented with regions involved also in the modulation
of breathing during sleep (pons, midbrain,
cerebellum, posterior cingulate cortices), and in
the modulation of breathing response to chemical
variations (anterior, posterior and para-hippocampal
cingulate cortices).
CONCLUSIONS: Our preliminary data support
the presence of functional hyper connectivity in
thalamic circuits modulating sensorial stimuli, in
patients with post-stroke sleep apnoea, possibly
influencing both their arousal ability and breathing
modulation during sleep
GALNT2 as a novel modulator of adipogenesis and adipocyte insulin signaling
Background/objectives: A better understanding of adipose tissue biology is crucial to tackle insulin resistance and eventually coronary heart disease and diabetes, leading causes of morbidity and mortality worldwide. GALNT2, a GalNAc-transferase, positively modulates insulin signaling in human liver cells by down-regulating ENPP1, an insulin signaling inhibitor. GALNT2 expression is increased in adipose tissue of obese as compared to that of non-obese individuals. Whether this association is secondary to a GALNT2-insulin sensitizing effect exerted also in adipocytes is unknown. We then investigated in mouse 3T3-L1 adipocytes the GALNT2 effect on adipogenesis, insulin signaling and expression levels of both Enpp1 and 72 adipogenesis-related genes. Methods: Stable over-expressing GALNT2 and GFP preadipocytes (T 0 ) were generated. Adipogenesis was induced with (R+) or without (R−) rosiglitazone and investigated after 15 days (T 15 ). Lipid accumulation (by Oil Red-O staining) and intracellular triglycerides (by fluorimetric assay) were measured. Lipid droplets (LD) measures were analyzed at confocal microscope. Gene expression was assessed by RT-PCR and insulin-induced insulin receptor (IR), IRS1, JNK and AKT phosphorylation by Western blot. Results: Lipid accumulation, triglycerides and LD measures progressively increased from T 0 to T 15 R- and furthermore to T 15 R+. Such increases were significantly higher in GALNT2 than in GFP cells so that, as compared to T 15 R+GFP, T 15 R- GALNT2 cells showed similar (intracellular lipid and triglycerides accumulation) or even higher (LD measures, p < 0.01) values. In GALNT2 preadipocytes, insulin-induced IR, IRS1 and AKT activation was higher than that in GFP cells. GALNT2 effect was totally abolished during adipocyte maturation and completely reversed at late stage maturation. Such GALNT2 effect trajectory was paralleled by coordinated changes in the expression of Enpp1 and adipocyte-maturation key genes. Conclusions: GALNT2 is a novel modulator of adipogenesis and related cellular phenotypes, thus becoming a potential target for tackling the obesity epidemics and its devastating sequelae
Pharmacokinetics and antinociceptive effects of tramadol and its metabolite O-desmethyltramadol following intravenous administration in sheep
Although sheep are widely used as an experimental model for various surgical procedures there is a paucity of data on the pharmacokinetics and efficacy of analgesic drugs in this species. The aims of this study were to investigate the pharmacokinetics of intravenously (IV) administered tramadol and its active metabolite O-desmethyltramadol (M1) and to assess the mechanical antinociceptive effects in sheep. In a prospective, randomized, blinded study, six healthy adult sheep were given 4 and 6\u2009mg/kg tramadol and saline IV in a cross-over design with a 2-week wash-out period. At predetermined time points blood samples were collected and physiological parameters and mechanical nociceptive threshold (MNT) values were recorded. The analytical determination of tramadol and M1 was performed using high performance liquid chromatography. Pharmacokinetic parameters fitted a two- and a non-compartmental model for tramadol and M1, respectively. Normally distributed data were analysed by a repeated mixed linear model. Plasma concentration vs. time profiles of tramadol and M1 were similar after the two doses. Tramadol and M1 plasma levels decreased rapidly in the systemic circulation, with both undetectable after 6\u2009h following drug administration. Physiological parameters did not differ between groups; MNT values were not statistically significant between groups at any time point. It was concluded that although tramadol and M1 concentrations in plasma were above the human minimum analgesic concentration after both treatments, no mechanical antinociceptive effects of tramadol were reported. Further studies are warranted to assess the analgesic efficacy of tramadol in sheep
- …