4 research outputs found

    Fabrication, Physico-Chemical, and Pharmaceutical Characterization of Budesonide-Loaded Electrospun Fibers for Drug Targeting to the Colon

    No full text
    The objective of this study was to fabricate and characterize electrospun fibers loaded with budesonide with the aim of controlling its release in the gastrointestinal tract. Budesonide is a nonhalogenated glucocorticosteroid drug, highly effective in the treatment of some inflammatory bowel diseases with local action throughout ileum and colon. At this aim, Eudragit® S 100, a polymer soluble at pH > 7, commonly used for enteric release of drugs, has been successfully spun into ultrafine fibers loaded with Budesonide (B) at 9% and 20% (w/w) using the electrospinning process. The physico-chemical characterization by scanning electron microscopy, X-ray diffraction, FTIR spectroscopy, and thermal analyses indicated the amorphous nature of budesonide in the electrospun systems. Dissolution rate measurements using a pH-change method showed negligible drug dissolved at pH 1.0 and sustained release at pH 7.2. Therefore, the pharmaceutical systems proposed, made of fibers, represent an effective method for drug targeting to terminal ileum and colon with the aim of improving the local efficacy of this drug. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci

    Electrospun fibers as potential carrier systems for enhanced drug release of perphenazine

    No full text
    Solubility represents an important challenge for formulation of drugs, because the therapeutic efficacy of a drug depends on the bioavailability and ultimately on its solubility. Low aqueous solubility is one of the main issues related with formulation design and development of new molecules. Many drug molecules present bioavailability problems due to their poor solubility. For this reason there is a great interest in the development of new carrier systems able to enhance the dissolution of poorly water-soluble drugs. In this work, fibers containing an insoluble model drug and prepared by an electrospinning method, are proposed and evaluated to solve this problem. Two hydrophilic polymers, polyvinylpyrrolidone (Plasdone® K29/32) and polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus®) were used to increase the water solubility of perphenazine. The physico-chemical characterization suggests that the drug loaded in the fibers is in the amorphous state. Both polymeric carriers are effective to promote the drug dissolution rate in water, where this active pharmaceutical ingredient is insoluble, due to the fine dispersion of the drug into the polymeric matrices, obtained with this production technique. In fact, the dissolution profiles of the fibers, compared to the simple physical mixture of the two components, and to the reference commercial product Trilafon® 8mg tablets, show that a strong enhancement of the drug dissolution rate can be achieved with the electrospinning technique

    Properties of Glauconite/Polyaniline Composite Prepared in Aqueous Solution of Citric Acid

    No full text
    Hybrid composite made of glauconite and polyaniline was prepared in aqueous solution of citric acid. Scanning electron microscopy combined with energy dispersive X-ray analysis shows uniform aggregates made of glauconite microparticles and polyaniline matrix. The results of X-ray powder diffraction suggest that: (1) citric acid used for the polymerisation of aniline causes formation of emeraldine salt where macromolecular ordering in the amorphous polymer takes place; (2) no chemical interaction between glauconite and emeraldine takes place in the prepared composite. FT-IR spectra of the prepared polymer and composite show features indicating all the functional groups that are present in the diiminoquinone–diaminobenzene state of polyaniline. Thermal stability of the composite was higher than the prepared polymer suggesting the occurrence of an interphase interaction between glauconite and emeraldine. After pyrolysis in purified nitrogen the composite still remained glauconite, and ε-Fe3N together with amorphous and graphitic carbon were found as reaction products. The values of electrical conductivity and magnetization of the composite suggest that optimization of these values might be achieved based upon the relationship between glauconite and polyaniline
    corecore