5 research outputs found

    RANK Signaling Amplifies WNT-Responsive Mammary Progenitors through R-SPONDIN1

    Get PDF
    SummarySystemic and local signals must be integrated by mammary stem and progenitor cells to regulate their cyclic growth and turnover in the adult gland. Here, we show RANK-positive luminal progenitors exhibiting WNT pathway activation are selectively expanded in the human breast during the progesterone-high menstrual phase. To investigate underlying mechanisms, we examined mouse models and found that loss of RANK prevents the proliferation of hormone receptor-negative luminal mammary progenitors and basal cells, an accompanying loss of WNT activation, and, hence, a suppression of lobuloalveologenesis. We also show that R-spondin1 is depleted in RANK-null progenitors, and that its exogenous administration rescues key aspects of RANK deficiency by reinstating a WNT response and mammary cell expansion. Our findings point to a novel role of RANK in dictating WNT responsiveness to mediate hormone-induced changes in the growth dynamics of adult mammary cells

    Cell-free DNA and circulating tumor cell kinetics in a pre-clinical head and neck Cancer model undergoing radiation therapy

    No full text
    Abstract Background Monitoring circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs), known as liquid biopsies, continue to be developed as diagnostic and prognostic markers for a wide variety of cancer indications, mainly due to their minimally invasive nature and ability to offer a wide range of phenotypic and genetic information. While liquid biopsies maintain significant promising benefits, there is still limited information regarding the kinetics of ctDNA and CTCs following radiation therapy which remains a vital treatment modality in head and neck cancers. This study aims to describe the kinetics of ctDNA and CTCs following radiation exposure in a preclinical rabbit model with VX2 induced buccal carcinoma. Methods Seven rabbits were inoculated with VX2 cells in the buccal mucosa and subjected to radiation. At selected time points, blood sampling was performed to monitor differing levels of ctDNA and CTC. Plasma ctDNA was measured with quantitative PCR for papillomavirus E6 while CTCs were quantified using an immunomagnetic nanoparticles within a microfluidic device. Comparisons of CTC detection with EpCAM compared to multiple surface markers (EGFR, HER2 and PSMA) was evaluated and correlated with the tumor size. Results Plasma ctDNA reflects the overall tumor burden within the animal model. Analysis of correlations between ctDNA with tumor and lymph node volumes showed a positive correlation (R = 0.452 and R = 0.433 [p < 0.05]), respectively. Over the course of treatment, ctDNA levels declined and quickly becomes undetectable following tumor eradication. While during the course of treatment, ctDNA levels were noted to rise particularly upon initiation of radiation following scheduled treatment breaks. Levels of CTCs were observed to increase 1 week following inoculation of tumor to the primary site. For CTC detection, the use of multiple surface markers showed a greater sensitivity when compared to detection using only EpCAM. Plasma CTC levels remained elevated following radiation therapy which may account for an increased shedding of CTCs following radiation. Conclusion This study demonstrates the utility of ctDNA and CTCs detection in response to radiation treatment in a preclinical head and neck model, allowing for better understanding of liquid biopsy applications in both clinical practice and research development

    Ectodomain shedding of EGFR ligands and TNFR1 dictates hepatocyte apoptosis during fulminant hepatitis in mice

    No full text
    The cell death receptor Fas plays a role in the establishment of fulminant hepatitis, a major cause of drug-induced liver failure. Fas activation elicits extrinsic apoptotic and hepatoprotective signals; however, the mechanisms by which these signals are integrated during disease are unknown. Tissue inhibitor of metalloproteinases 3 (TIMP3) controls the critical sheddase a disintegrin and metalloproteinase 17 (ADAM17) and may dictate stress signaling. Using mice and cells lacking TIMP3, ADAM17, and ADAM17-regulated cell surface molecules, we have found that ADAM17-mediated ectodomain shedding of TNF receptors and EGF family ligands controls activation of multiple signaling cascades in Fas-induced hepatitis. We demonstrated that TNF signaling promoted hepatotoxicity, while excessive TNF receptor 1 (TNFR1) shedding in Timp3–/– mice was protective. Compound Timp3–/–Tnf–/– and Timp3–/–Tnfr1–/– knockout conferred complete resistance to Fas-induced toxicity. Loss of Timp3 enhanced metalloproteinase-dependent EGFR signaling due to increased release of the EGFR ligands TGF-α, amphiregulin, and HB-EGF, while depletion of shed amphiregulin resensitized Timp3–/– hepatocytes to apoptosis. Finally, adenoviral delivery of Adam17 prevented acetaminophen-induced liver failure in a clinically relevant model of Fas-dependent fulminant hepatitis. These findings demonstrate that TIMP3 and ADAM17 cooperatively dictate cytokine signaling during death receptor activation and indicate that regulated metalloproteinase activity integrates survival and death signals during acute hepatotoxic stress

    Prkar1a is an osteosarcoma tumor suppressor that defines a molecular subclass in mice

    No full text
    Some cancers have been stratified into subclasses based on their unique involvement of specific signaling pathways. The mapping of human cancer genomes is revealing a vast number of somatic alterations; however, the identification of clinically relevant molecular tumor subclasses and their respective driver genes presents challenges. This information is key to developing more targeted and personalized cancer therapies. Here, we generate a new mouse model of genomically unstable osteosarcoma (OSA) that phenocopies the human disease. Integrative oncogenomics pinpointed cAMP-dependent protein kinase type I, α regulatory subunit (Prkar1a) gene deletions at 11qE1 as a recurrent genetic trait for a molecularly distinct subclass of mouse OSA featuring RANKL overexpression. Using mouse genetics, we established that Prkar1a is a bone tumor suppressor gene capable of directing subclass development and driving RANKL overexpression during OSA tumorigenesis. Finally, we uncovered evidence for a PRKAR1A-low subset of human OSA with distinct clinical behavior. Thus, tumor subclasses develop in mice and can potentially provide information toward the molecular stratification of human cancers
    corecore