10,282 research outputs found

    Rapid Serial Visual Presentation. Degradation of inferential reading comprehension as a function of speed

    Get PDF
    There is increasing interest in the readability of text presented on small digital screens. Designers have come up with novel text presentation methods, such as moving text from right to left, line-stepping, or showing successive text segments such as phrases or single words in a RSVP format. Comparative studies have indicated that RSVP is perhaps the best method of presenting text in a limited space. We tested the method using 209 participants divided into six groups. The groups included traditional reading, and RSVP reading at rates of 250, 300, 350, 400, and 450 wpm. No significant differences were found in comprehension for normal reading and RSVP reading at rates of 250, 300 and 350 wpm. However, higher rates produced significantly lower comprehension scores. It remains to be determined if, with additional practice and improved methods, good levels of reading comprehension at high rates can be achieved with RSV

    The solution of the quantum A1A_1 T-system for arbitrary boundary

    Full text link
    We solve the quantum version of the A1A_1 TT-system by use of quantum networks. The system is interpreted as a particular set of mutations of a suitable (infinite-rank) quantum cluster algebra, and Laurent positivity follows from our solution. As an application we re-derive the corresponding quantum network solution to the quantum A1A_1 QQ-system and generalize it to the fully non-commutative case. We give the relation between the quantum TT-system and the quantum lattice Liouville equation, which is the quantized YY-system.Comment: 24 pages, 18 figure

    Laughlin's wave functions, Coulomb gases and expansions of the discriminant

    Full text link
    In the context of the fractional quantum Hall effect, we investigate Laughlin's celebrated ansatz for the groud state wave function at fractional filling of the lowest Landau level. Interpreting its normalization in terms of a one component plasma, we find the effect of an additional quadrupolar field on the free energy, and derive estimates for the thermodynamically equivalent spherical plasma. In a second part, we present various methods for expanding the wave function in terms of Slater determinants, and obtain sum rules for the coefficients. We also address the apparently simpler question of counting the number of such Slater states using the theory of integral polytopes.Comment: 97 pages, using harvmac (with big option recommended) and epsf, 7 figures available upon request, Saclay preprint Spht 93/12

    Quantum Knizhnik-Zamolodchikov equation: reflecting boundary conditions and combinatorics

    Full text link
    We consider the level 1 solution of quantum Knizhnik-Zamolodchikov equation with reflecting boundary conditions which is relevant to the Temperley--Lieb model of loops on a strip. By use of integral formulae we prove conjectures relating it to the weighted enumeration of Cyclically Symmetric Transpose Complement Plane Partitions and related combinatorial objects

    Nature of the Vacuum inside the Color Flux Tube

    Get PDF
    The interior of the color flux tube joining a quark pair can be probed by evaluating the correlator of pair of Polyakov loops in a vacuum modified by another Polyakov pair, in order to check the dual superconductivity conjecture which predicts a deconfined, hot core. We also point out that at the critical point of any 3D gauge theories with a continuous deconfining transition the Svetitsky-Yaffe conjecture provides us with an analytic expression of the Polyakov correlator as a function of the position of the probe inside the flux tube. Both these predictions are compared with numerical results in 3D Z2 gauge model finding complete agreement.Comment: 3 pages, Talk presented at LATTICE96(topology

    A Bijection between classes of Fully Packed Loops and Plane Partitions

    Full text link
    It has recently been observed empirically that the number of FPL configurations with 3 sets of a, b and c nested arches equals the number of plane partitions in a box of size a x b x c. In this note, this result is proved by constructing explicitly the bijection between these FPL and plane partitions

    Inhomogeneous loop models with open boundaries

    Full text link
    We consider the crossing and non-crossing O(1) dense loop models on a semi-infinite strip, with inhomogeneities (spectral parameters) that preserve the integrability. We compute the components of the ground state vector and obtain a closed expression for their sum, in the form of Pfaffian and determinantal formulas.Comment: 42 pages, 31 figures, minor corrections, references correcte

    Quantum Knizhnik-Zamolodchikov equation, generalized Razumov-Stroganov sum rules and extended Joseph polynomials

    Full text link
    We prove higher rank analogues of the Razumov--Stroganov sum rule for the groundstate of the O(1) loop model on a semi-infinite cylinder: we show that a weighted sum of components of the groundstate of the A_{k-1} IRF model yields integers that generalize the numbers of alternating sign matrices. This is done by constructing minimal polynomial solutions of the level 1 U_q(\hat{sl(k)}) quantum Knizhnik--Zamolodchikov equations, which may also be interpreted as quantum incompressible q-deformations of fractional quantum Hall effect wave functions at filling fraction nu=1/k. In addition to the generalized Razumov--Stroganov point q=-e^{i pi/k+1}, another combinatorially interesting point is reached in the rational limit q -> -1, where we identify the solution with extended Joseph polynomials associated to the geometry of upper triangular matrices with vanishing k-th power.Comment: v3: misprint fixed in eq (2.1

    Polynomial solutions of qKZ equation and ground state of XXZ spin chain at Delta = -1/2

    Full text link
    Integral formulae for polynomial solutions of the quantum Knizhnik-Zamolodchikov equations associated with the R-matrix of the six-vertex model are considered. It is proved that when the deformation parameter q is equal to e^{+- 2 pi i/3} and the number of vertical lines of the lattice is odd, the solution under consideration is an eigenvector of the inhomogeneous transfer matrix of the six-vertex model. In the homogeneous limit it is a ground state eigenvector of the antiferromagnetic XXZ spin chain with the anisotropy parameter Delta equal to -1/2 and odd number of sites. The obtained integral representations for the components of this eigenvector allow to prove some conjectures on its properties formulated earlier. A new statement relating the ground state components of XXZ spin chains and Temperley-Lieb loop models is formulated and proved.Comment: v2: cosmetic changes, new section on refined TSSCPPs vs refined ASM
    • …
    corecore