81 research outputs found

    Entanglement evolution in a cascaded system with losses

    Full text link
    The dynamics of a cascaded system that consists of two atom-cavity subsystems is studied by using the quantum trajectory method. Unwanted losses are included, such as photon absorption and scattering by the cavity mirrors and spontaneous emission of the atoms. Considering an initially excited two-level atom in the source subsystem, analytical solutions are obtained. The entanglement evolution is studied for the two atoms and for the two intracavity fields.Comment: 6 pages, 4 figure

    Entanglement signature in the mode structure of a single photon

    Full text link
    It is shown that entanglement, which is a quantum correlation property of at least two subsystems, is imprinted in the mode structure of a single photon. The photon, which is emitted by two coupled cavities, carries the information on the concurrence of the two intracavity fields. This can be useful for recording the entanglement dynamics of two cavity fields and for entanglement transfer.Comment: 4 pages, 3 figure

    Biological and electrochemical valorisation of lignocellulosic wastes from pulp & paper industry to give new generation biodiesel and aromatic compounds

    Get PDF
    Technical lignin and cellulosic wastepaper represent the main side-streams of the existing industrial-scale biorefineries and paper industry. The valorisation of these renewable and low- or negative-value feedstocks is a strategic approach to enhance the biorefinery and paper industry sustainability. Lignin represents a promising source of aromatic compounds, while cellulosic wastepaper is a high-quality source of sugars which can be converted into several added-value bioproducts, such as biofuels, biochemicals and biomaterials. In this perspective, in the present work, the electrochemical valorisation of lignin to give aromatics was performed [1], whereas in the case of wastepaper, a direct enzymatic hydrolysis was optimised to simultaneously produce glucose and xylose which were then fermented by oleaginous yeasts to produce new generation biodiesel [2]. In particular, the soda technical lignin Protobind™ 1000 (P1000) was adopted as starting material. It is produced on an industrial scale by the company GreenValue (Switzerland), starting from a mix of wheat straw and sarkanda grass, after an alkaline extraction with sodium hydroxide. In order to improve the lignin exploitation to added-value aromatic compounds, a mild chemical conversion route based on electrochemistry was investigated [1]. Under the optimal reaction conditions (NiOOH electrode, pH 14, lignin 20 g/L, 0.4 V), the electro-oxidative depolymerisation of lignin by electrolysis was performed in a divided cell. The main products were sinapic acid, vanillin, vanillic acid, and acetovanillone. The obtained preliminary results demonstrated the potential feasibility of this innovative electrochemical route for lignin valorisation for the production of bio-aromatic chemicals. The wastepaper derived from the converting process for the production of tissue paper products by different local companies in Lucca (Italy). The waste cellulosic powder is produced in the converting section, where the paper coil is unrolled and the sheet is subjected to mechanical operations to give the final commercial product. This cellulosic waste is not suitable to be recycled within the same papermaking process. For this reason, it is typically recovered by aspiration and sent to the landfill. Regarding the exploitation of wastepaper, an innovative two-step process for the conversion of waste tissue paper to single cell oil (SCO) was optimised. SCO represents an outstanding alternative to both fossil sources and vegetable oils for the production of biodiesel. Hydrolysates containing glucose and xylose were produced by enzymatic hydrolysis of the untreated waste. Under the optimised reaction conditions (Cellic® CTec2 25 FPU/g glucan, 48 h, biomass loading 20 g/L), the yield of 95 mol% was reached for both glucose and xylose. The undetoxified hydrolysate was adopted as substrate for a batch-mode fermentation by the oleaginous yeast Lipomyces starkeyi. Lipid yield, lipid content for single cell, oil production and maximum oil productivity were 20.2 wt%, 37 wt%, 3.7 g/L and 2.0 g/L/d, respectively. This new generation oil, obtained from a negative value industrial waste, represents a promising platform chemical for the production of biodiesel, biosurfactants, animal feed and biobased plastics

    Microwave-assisted FeCl3-catalysed production of glucose from giant reed and cardoon cellulose fraction and its fermentation to new generation oil by oleaginous yeasts

    Get PDF
    The replacement of fossil fuels and materials with biofuels and bioproducts is a crucial current global goal. Biorefining of lignocellulosic biomass generates pentose and hexose sugars which can be converted into several added-value bio-based compounds. Among biofuels, biodiesel is one of the most promising renewable energy sources since it does not require new technology and engines for its use. Traditional biodiesel is produced on the industrial scale starting from vegetable oils obtained from oleaginous crops, such as palm oil, rapeseed oil and sunflower oil. However, most of the oleaginous plant species are food crops, determining the ethical debate on the right use of these renewable resources and the competition between the energy industry and food chain. An innovative and promising solution is represented by single cell oil (SCO) produced from oleaginous yeasts. This new generation oil, if obtained from low or negative value industrial waste, represents a promising platform chemical for the production of biodiesel, biosurfactants, animal feed and biobased plastics [1]. This study investigated the microwave-assisted FeCl3-catalysed hydrolysis of giant reed (Arundo donax L.) and defatted cardoon (Cynara cardunculus L.) cellulose fractions to give glucose. Giant reed is a promising energy crops able to grow on marginal lands, while cardoon stalks are the crop residue in the production of vegetable oil. A preliminary acid pretreatment was adopted for giant reed [2], while steam-explosion pretreatment was performed on cardoon [3], both allowing a significant removal of xylan fractions. Under different reactions conditions, the microwave-assisted FeCl3-catalysed hydrolysis converted the two pretreated feedstocks into glucose-rich hydrolysates which were employed as fermentation medium for the production of SCO by the oleaginous yeast Lipomyces starkeyi DSM 70296. For giant reed, the low production of furanic compounds enabled the direct fermentation of undetoxified hydrolysates, while for cardoon the furfural removal was necessary before the fermentation step. After hydrolysis, for both hydrolysates the fermentation provided promising lipid yields (~14 wt%) and oil content (~25 wt%). Figure 1 shows the process layout of the implemented third-generation biorefinery scheme. The SCO appears a valid candidate for the production of new generation biodiesel with good oxidative stability and cold flow properties. Moreover, it resulted very similar to palm and rapeseed oils, usually employed as a renewable source for the production of traditional biodiesel

    Single cell oil production from undetoxified Arundo donax L. hydrolysate by Cutaneotrichosporon curvatus

    Get PDF
    The use of low-cost substrates represents one key issue to make single cell oil production sustainable. Among low-input crops, Arundo donax L. is a perennial herbaceous rhizomatous grass containing both C5 and C6 carbohydrates. The scope of the present work was to investigate and optimize the production of lipids by the oleaginous yeast Cutaneotrichosporon curvatus from undetoxified lignocellulosic hydrolysates of steam-pretreated A. donax. The growth of C. curvatus was first optimized in synthetic media, similar in terms of sugar concentration to hydrolysates, by applying the response surface methodology (RSM) analysis. Then the bioconversion of undetoxified hydrolysates was investigated. A fed-batch process for the fermentation of A. donax hydrolysates was finally implemented in a 2-L bioreactor. Under optimized conditions, the total lipid content was 64% of the dry cell weight and the lipid yield was 63% of the theoretical. The fatty acid profile of C. curvatus triglycerides contained 27% palmitic acid, 33% oleic acid and 32% linoleic acid. These results proved the potential of lipid production from A. donax, which is particularly important for their consideration as substitutes for vegetable oils in many applications such as biodiesel or bioplastics

    Cutaneotrichosporon oleaginosus: A Versatile Whole-Cell Biocatalyst for the Production of Single-Cell Oil from Agro-Industrial Wastes

    Get PDF
    Cutaneotrichosporon oleaginosus is an oleaginous yeast with several favourable qualities: It is fast growing, accumulates high amounts of lipids and has a very broad substrate spectrum. Its resistance to hydrolysis by-products makes it a promising biocatalyst for custom tailored microbial oils. C. oleaginosus can accumulate up to 60 wt.% of its biomass as lipids. This species is able to grow by using several compounds as a substrate, such as acetic acid, biodiesel-derived glycerol, N-acetylglucosamine, lignocellulosic hydrolysates, wastepaper and other agro-industrial wastes. This review is focused on state-of-the-art innovative and sustainable biorefinery schemes involving this promising yeast and second- and third-generation biomasses. Moreover, this review offers a comprehensive and updated summary of process strategies, biomass pretreatments and fermentation conditions for enhancing lipid production by C. oleaginosus as a whole-cell biocatalyst. Finally, an overview of the main industrial applications of single-cell oil is reported together with future perspectives

    Novel Challenges on the Catalytic Synthesis of 5-Hydroxymethylfurfural (HMF) from Real Feedstocks

    Get PDF
    The depletion of fossil resources makes the transition towards renewable ones more urgent. For this purpose, the synthesis of strategic platform-chemicals, such as 5-hydroxymethylfurfural (HMF), represents a fundamental challenge for the development of a feasible bio-refinery. HMF perfectly deals with this necessity, because it can be obtained from the hexose fraction of biomass. Thanks to its high reactivity, it can be exploited for the synthesis of renewable monomers, solvents, and bio-fuels. Sustainable HMFsynthesis requires the use of waste biomasses, rather than model compounds such as monosaccharides or polysaccharides, making its production more economically advantageous from an industrial perspective. However, the production of HMF from real feedstocks generally suffers from scarce selectivity, due to their complex chemical composition and HMF instability. On this basis, different strategies have been adopted to maximize the HMF yield. Under this perspective, the properties of the catalytic system, as well as the choice of a suitable solvent and the addition of an eventual pretreatment of the biomass, represent key aspects of the optimization of HMF synthesis. On this basis, the present review summarizes and critically discusses the most recent and attractive strategies for HMF production from real feedstocks, focusing on the smartest catalytic systems and the overall sustainability of the adopted reaction conditions

    Integrated cascade biorefinery processes for the production of single cell oil by Lipomyces starkeyi from Arundo donax L. hydrolysates

    Get PDF
    Giant reed (Arundo donax L.) is a promising source of carbohydrates that can be converted into single cell oil (SCO) by oleaginous yeasts. Microbial conversion of both hemicellulose and cellulose fractions represents the key step for increasing the economic sustainability for SCO production. Lipomyces starkeyi DSM 70,296 was cultivated in two xylose-rich hydrolysates, obtained by the microwave-assisted hydrolysis of hemicellulose catalysed by FeCl3 or Amberlyst-70, and in two glucose-rich hydrolysates obtained by the enzymatic hydrolysis of cellulose. L. starkeyi grew on both undetoxified and partially-detoxified hydrolysates, achieving the lipid content of 30 wt% and yield values in the range 15–24 wt%. For both integrated cascade processes the final production of about 8 g SCO from 100 g biomass was achieved. SCO production through integrated hydrolysis cascade processes represents a promising solution for the effective exploitation of lignocellulosic feedstock from perennial grasses towards new generation biodiesel and other valuable bio-based products

    Biomass-derived catalysts: synthesis and characterization of hydrochars and pyrochars

    Get PDF
    Lignocellulosic biomass is one of the more important renewable sources and it will play a strategic role in many future markets, taking into consideration that a renewable energy share of 32% is binding at the European level by 2030. Deconstruction of lignocellulosic biomass can be carried out via hydrothermal processes and, among them, hydrothermal carbonization (HTC) represents a versatile process, which promotes the progressively deoxygenation of the biomass, under relatively mild reaction conditions. The obtained solid-rich product, called hydrochar, can be used in a wide range of applications, such as adsorption, energy storage, CO2 sequestration, catalysis etc. In this last field, within the project PRIN 2020 LEVANTE “LEvulinic acid Valorization through Advanced Novel Technologies” (2020CZCJN7), different hydrochars have been synthesized starting from cellulose and the effects of the main reaction parameters have been investigated employing statistical modelling. Under the selected set of processing parameters, the yield of hydrochars was in the range 38-48 wt%, with a carbon content of 60-70 wt% and corresponding higher heating values amounting to 17-27 MJ/kg, confirming the successful conversion of cellulose into a carbonaceous material. Finally, on the basis of final applications, also pyrochars have been prepared starting from the optimal hydrochars, in order to increase the aromatization degree and the surface areas. All the synthesized hydrochars and pyrochars will be further functionalized and employed, as acid catalysts, for the valorization of levulinic acid, in particular for its conversion to diphenolic acid, in agreement with the objectives of the project LEVANTE

    Sustainable exploitation of residual cynara cardunculus l. To levulinic acid and n-butyl levulinate

    Get PDF
    Hydrolysis and butanolysis of lignocellulosic biomass are efficient routes to produce two valuable bio-based platform chemicals, levulinic acid and n-butyl levulinate, which find increasing applications in the field of biofuels and for the synthesis of intermediates for chemical and pharmaceutical industries, food additives, surfactants, solvents and polymers. In this research, the ac-id-catalyzed hydrolysis of the waste residue of Cynara cardunculus L. (cardoon), remaining after seed removal for oil exploitation, was investigated. The cardoon residue was employed as-received and after a steam-explosion treatment which causes an enrichment in cellulose. The effects of the main reaction parameters, such as catalyst type and loading, reaction time, temperature and heat-ing methodology, on the hydrolysis process were assessed. Levulinic acid molar yields up to about 50 mol % with levulinic acid concentrations of 62.1 g/L were reached. Moreover, the one-pot bu-tanolysis of the steam-exploded cardoon with the bio-alcohol n-butanol was investigated, demon-strating the direct production of n-butyl levulinate with good yield, up to 42.5 mol %. These results demonstrate that such residual biomass represent a promising feedstock for the sustainable production of levulinic acid and n-butyl levulinate, opening the way to the complete exploitation of this crop
    • …
    corecore