1,785 research outputs found

    Analgesic and Antineuropathic Drugs Acting Through Central Cholinergic Mechanisms

    Get PDF
    The role of muscarinic and nicotinic cholinergic receptors in analgesia and neuropathic pain relief is relatively unknown. This review describes how such drugs induce analgesia or alleviate neuropathic pain by acting on the central cholinergic system. Several pharmacological strategies are discussed which increase synthesis and release of acetylcholine (ACh) from cholinergic neurons. The effects of their acute and chronic administration are described. The pharmacological strategies which facilitate the physiological functions of the cholinergic system without altering the normal modulation of cholinergic signals are highlighted. It is proposed that full agonists of muscarinic or nicotinic receptors should be avoided. Their activation is too intense and un-physiological because neuronal signals are distorted when these receptors are constantly activated. Good results can be achieved by using agents that are able to a) increase ACh synthesis, b) partially inhibit cholinesterase activity c) selectively block the autoreceptor or heteroreceptor feedback mechanisms

    Low dose native type II collagen prevents pain in a rat osteoarthritis model

    Get PDF
    BACKGROUND: Osteoarthritis is the most widespread joint-affecting disease. Patients with osteoarthritis experience pain and impaired mobility resulting in marked reduction of quality of life. A progressive cartilage loss is responsible of an evolving disease difficult to treat. The characteristic of chronicity determines the need of new active disease modifying drugs. Aim of the present research is to evaluate the role of low doses of native type II collagen in the rat model of osteoarthritis induced by sodium monoiodoacetate (MIA). METHODS: 1, 3 and 10 mg kg(-1) porcine native type II collagen were daily per os administered for 13 days starting from the day of MIA intra-articular injection. RESULTS: On day 14, collagen-treated rats showed a significant prevention of pain threshold alterations induced by MIA. Evaluation were performed on paws using mechanical noxious (Paw pressure test) or non-noxious (Electronic Von Frey test) stimuli, and a decrease of articular pain was directly measured on the damaged joint (PAM test). The efficacy of collagen in reducing pain was as higher as the dose was lowered. Moreover, a reduced postural unbalance, measured as hind limb weight bearing alterations (Incapacitance test), and a general improvement of motor activity (Animex test) were observed. Finally, the decrease of plasma and urine levels of CTX-II (Cross Linked C-Telopeptide of Type II Collagen), a biomarker of cartilage degradation, suggests a collagen-dependent decrease of structural joint damage. CONCLUSIONS: These results describe the preclinical efficacy of low dosages of native type II collagen as pain reliever by a mechanism that involves a protective effect on cartilage

    Effect of glucoraphanin and sulforaphane against chemotherapy-induced neuropathic pain: Kv7 potassium channels modulation by H2 S release in vivo.

    Get PDF
    The beneficial effects of isothiocyanate-based compounds, as well as their safety, have been shown in neuropathological disorders, such as neuropathic pain. Aim of the present work was to study the efficacy of the glucosinolate glucoraphanin (GRA) and the derived isothiocyanate sulforaphane (SFN), secondary metabolites occurring exclusively in Brassicales, on chemotherapy-induced neuropathic pain. Mice were repeatedly treated with oxaliplatin (2.4 mg kg−1 ip) for 14 days to induce neuropathic pain. GRA and SFN effects were evaluated after a single administration on Day 15 or after a daily repeated oral and subcutaneous treatment starting from the first day of oxaliplatin injection until the 14th day. Single subcutaneous and oral administrations of GRA (4.43–119.79 ÎŒmol kg−1) or SFN (1.33–13.31 ÎŒmol kg−1) reduced neuropathic pain in a dose-dependent manner. The repeated administration of GRA and SFN (respectively 13.31 and 4.43 ÎŒmol kg−1) prevented the chemotherapy-induced neuropathy. The co-administration of GRA and SFN in mixture with the H2S binding molecule, haemoglobin, abolished their pain-relieving effect, which was also reverted by pretreating the animals with the selective blocker of Kv7 potassium channels, XE991. GRA and SFN reduce neuropathic pain by releasing H2S and modulating Kv7 channels and show a protective effect on the chemotherapy-induced neuropathy
    • 

    corecore