663 research outputs found

    A formally exact field theory for classical systems at equilibrium

    Full text link
    We propose a formally exact statistical field theory for describing classical fluids with ingredients similar to those introduced in quantum field theory. We consider the following essential and related problems : i) how to find the correct field functional (Hamiltonian) which determines the partition function, ii) how to introduce in a field theory the equivalent of the indiscernibility of particles, iii) how to test the validity of this approach. We can use a simple Hamiltonian in which a local functional transposes, in terms of fields, the equivalent of the indiscernibility of particles. The diagrammatic expansion and the renormalization of this term is presented. This corresponds to a non standard problem in Feynman expansion and requires a careful investigation. Then a non-local term associated with an interaction pair potential is introduced in the Hamiltonian. It has been shown that there exists a mapping between this approach and the standard statistical mechanics given in terms of Mayer function expansion. We show on three properties (the chemical potential, the so-called contact theorem and the interfacial properties) that in the field theory the correlations are shifted on non usual quantities. Some perspectives of the theory are given.Comment: 20 pages, 8 figure

    Shedding Light on Diatom Photonics by means of Digital Holography

    Get PDF
    Diatoms are among the dominant phytoplankters in the worl's ocean, and their external silica investments, resembling artificial photonics crystal, are expected to play an active role in light manipulation. Digital holography allowed studying the interaction with light of Coscinodiscus wailesii cell wall reconstructing the light confinement inside the cell cytoplasm, condition that is hardly accessible via standard microscopy. The full characterization of the propagated beam, in terms of quantitative phase and intensity, removed a long-standing ambiguity about the origin of the light. The data were discussed in the light of living cell behavior in response to their environment

    Correlation between real geometry and tensile mechanical behaviour for Ti6Al4V electron beam melted thin specimens

    Get PDF
    The Electron Beam Melting (EBM) is an Additive Layer Manufacturing (ALM) technique used to directly manufacture 3D functional parts from metal powder, selectively melted, layer by layer, by an electron beam according to a geometry defined by a CAD model. The EBM technology allows benefitting from countless advantages: material waste reduction, easy manufacturing of complex shapes, lead time reduction, etc; on the other hand the EBM process is typically associated with lower resolutions and higher surface roughness (Ra = 25–30 μm) compared to similar laser based powder bed metal processes. Therefore the surface morphology may be a critical issue for the structural integrity of components made in EBM and used in-service in their “as built” condition, i.e. with the characteristic surface released by the process. This study evaluates surface morphology and tensile properties of Ti6Al4V specimens of varying nominal thickness (1–5.0 mm), made by using EBM process with a layer thickness of 50 μm. The aim is therefore to investigate how the surface morphology and the tensile properties are affected by the nominal thickness of the component

    Numerical Investigation of the Failure Phenomena in Adhesively Bonded Joints by Means of a Multi-Linear Equivalent Plastic Stress/Strain Approach

    Get PDF
    Abstract In this work, a multi-linear material model for elastic-plastic response of ductile adhesives is proposed. Indeed, the proposed formulation allows to evaluate equivalent stress and strains to be used as material model input in FE commercial codes instead of the classical true stress and true strains. The presented model, which is capable to simulate the plasticity related phenomena and the failure event, has been implemented in the FEM code ABAQUS and used to numerically simulate the mechanical behaviour of adhesively bonded joints in traction. Several joints configurations have been considered with ductile, fragile and mix adhesives' behaviour to test the effectiveness and the range of applicability of the proposed model. Encouraging comparisons with literature experimental data demonstrates the added value of the suggested material model in predicting the failure of adhesively bonded joints

    The Modulatory Effect of Ellagic Acid and Rosmarinic Acid on Ultraviolet-B-Induced Cytokine/Chemokine Gene Expression in Skin Keratinocyte (HaCaT) Cells

    Get PDF
    Ultraviolet radiation (UV) induces an increase in multiple cutaneous inflammatory mediators. Ellagic acid (EA) and rosmarinic acid (RA) are natural anti-inflammatory and immunomodulatory compounds found in many plants, fruits, and nuts. We assessed the ability of EA and RA to modulate IL-1β, IL-6, IL-8, IL-10, MCP-1, and TNF-α gene expression in HaCaT cells after UVB irradiation. Cells were treated with UVB (100 mJ/cm(2)) and simultaneously with EA (5 μM in 0.1% DMSO) or RA (2.7 μM in 0.5% DMSO). Moreover, these substances were added to the UVB-irradiated cells 1 h or 6 h before harvesting, depending on the established UVB-induced cytokine expression peak. Cytokine gene expression was examined using quantitative real time polymerase chain reaction. RA produced a significant reduction in UVB-induced expression of IL-6, IL-8, MCP-1, and TNF-α when applied at the same time as irradiation. EA showed milder effects compared with RA, except for TNF-α. Both substances decreased IL-6 expression, also when applied 5 h after irradiation, and always produced a significant increase in UVB-induced IL-10 expression. Our findings suggest that EA and RA are able to prevent and/or limit the UVB-induced inflammatory cascade, through a reduction in proinflammatory mediators and the enhancement of IL-10, with its protective function

    Field theoretical representation of the Hohenberg-Kohn free energy for fluids

    Full text link
    To go beyond Gaussian approximation to the Hohenberg-Kohn free energy playing the key role in the density functional theory (DFT), the density functional \textit{integral} representation would be relevant, because field theoretical approach to perturbative calculations becomes available. Then the present letter first derives the associated Hamiltonian of density functional, explicitly including logarithmic entropy term, from the grand partition function expressed by configurational integrals. Moreover, two things are done so that the efficiency of the obtained form may be revealed: to demonstrate that this representation facilitates the field theoretical treatment of the perturbative calculation, and further to compare our perturbative formulation with that of the DFT.Comment: 5 pages, revtex, modified on 13 April 2000 [see eqs. (3), (6), and (13)

    Ageing test of the ATLAS RPCs at X5-GIF

    Full text link
    An ageing test of three ATLAS production RPC stations is in course at X5-GIF, the CERN irradiation facility. The chamber efficiencies are monitored using cosmic rays triggered by a scintillator hodoscope. Higher statistics measurements are made when the X5 muon beam is available. We report here the measurements of the efficiency versus operating voltage at different source intensities, up to a maximum counting rate of about 700Hz/cm^2. We describe the performance of the chambers during the test up to an overall ageing of 4 ATLAS equivalent years corresponding to an integrated charge of 0.12C/cm^2, including a safety factor of 5.Comment: 4 pages. Presented at the VII Workshop on Resistive Plate Chambers and Related Detectors; Clermont-Ferrand October 20th-22nd, 200

    A Formal Security Analysis of an OSA/Parlay Authentication Interface

    Get PDF
    Abstract. We report on an experience in analyzing the security of the Trust and Security Management (TSM) protocol, an authentication procedure within the OSA/Parlay Application Program Interfaces (APIs) of the Open Service Access and Parlay Group. The experience has been conducted jointly by research institutes experienced in security and industry experts in telecommunication networking. OSA/Parlay APIs are designed to enable the creation of telecommunication applications outside the traditional network space and business model. Network operators consider the OSA/Parlay a promising architecture to stimulate the development of web service applications by third party providers, which may not necessarily be experts in telecommunication and security. The TSM protocol is executed by the gateways to OSA/Parlay networks; its role is to authenticate client applications trying to access the interfaces of some object representing an offered network capability. For this reason, potential security flaws in the TSM authentication strategy can cause the unauthorized use of the network, with evident damages to the operator and the quality of services. We report a rigorous formal analysis of the TSM specification, which is originally given in UML. Furthermore, we illustrate our design choices to obtain the formal model, describe the tool-aided verification and finally expose the security flaws discovered

    Patent ductus arteriosus (also non-hemodynamically significant) correlates with poor outcomes in very low birth weight infants. A multicenter cohort study

    Get PDF
    Objectives To standardize the diagnosis of patent ductus arteriosus (PDA) and report its association with adverse neonatal outcomes in very low birth weight infants (VLBW, birth weight < 1500 g). Study design A multicenter prospective observational study was conducted in Emilia Romagna from March 2018 to October 2019. The association between ultrasound grading of PDA and adverse neonatal outcomes was evaluated after correction for gestational age. A diagnosis of hemodynamically significant PDA (hsPDA) was established when the PDA diameter was ≥ 1.6 mm at the pulmonary end with growing or pulsatile flow pattern, and at least 2 of 3 indexes of pulmonary overcirculation and/or systemic hypoperfusion were present. Results 218 VLBW infants were included. Among infants treated for PDA closure in the first postnatal week, up to 40% did not have hsPDA on ultrasound, but experienced clinical worsening. The risk of death was 15 times higher among neonates with non-hemodynamically significant PDA (non-hsPDA) compared to neonates with no PDA. In contrast, the risk of death was similar between neonates with hsPDA and neonates with no PDA. The occurrence of BPD was 6-fold higher among neonates with hsPDA, with no apparent beneficial role of early treatment for PDA closure. The risk of IVH (grade ≥ 3) and ROP (grade ≥ 3) increased by 8.7-fold and 18-fold, respectively, when both systemic hypoperfusion and pulmonary overcirculation were present in hsPDA. Conclusions The increased risk of mortality in neonates with non-hsPDA underscores the potential inadequacy of criteria for defining hsPDA within the first 3 postnatal days (as they may be adversely affected by other clinically severe factors, i.e. persistent pulmonary hypertension and mechanical ventilation). Parameters such as length, diameter, and morphology may serve as more suitable ultrasound indicators during this period, to be combined with clinical data for individualized management. Additionally, BPD, IVH (grade ≥ 3) and ROP (grade ≥ 3) are associated with hsPDA. The existence of an optimal timeframe for closing PDA to minimize these adverse neonatal outcomes remains uncertain
    • …
    corecore