47 research outputs found

    In vitro effects of fluticasone propionate on IL-13 production by mitogen-stimulated lymphocytes.

    Get PDF
    BACKGROUND: Corticosteroid administration produces multiple immunomodulatory effects, including down-regulation of cytokine production by CD4 T lymphocytes. Fluticasone propionate (FP) (Glaxo Smith&Kline, Greenford, UK), a highly lipophilic topical corticosteroid, has been shown to be safe and effective in the treatment of asthma and of both seasonal and perennial rhinitis. AIMS: To gain insight into the mechanisms of FP therapeutic effects, we evaluated interleukin (IL)-13 (a type 2 cytokine that seemingly plays a pivotal role in allergic mechanisms) production by mitogen-stimulated peripheral blood mononuclear cells (MNC) in vitro, treated or not with FP. METHODS: MNC from 10 healthy subjects and 10 asthmatic atopic patients with Parietaria allergy were stimulated v/v with phytohaemagglutinin (PHA) (50 gamma/ml) or with complete medium alone as a control. Culture supernatants, in vitro treated or not with 10(-7) or 10(-8) M FP, were collected after 48 or 72 h incubation. IL-13 production was assessed by enzyme-linked immunosorbent assay. In random selected samples, after 4 or 24 h of cell cultures, RNA was extracted and IL-4 and IL-5 reverse transcriptase-polymerase chain reaction (RT-PCR) products analyzed. RESULTS: At 48 h, there were no differences in IL-13 concentration in PHA-stimulated cultures between healthy subjects and asthmatic patients (93.6 +/- 18.9 versus 111.0 +/- 25.1 pg/ml). At 72 h, similar results were obtained (63.9 +/- 3.0 versus 73.3 +/- 2.5 pg/ml, respectively). At this time, however, IL-13 concentrations were significantly decreased versus 48 h both in asthmatics (p < 0.001) and in controls (p < 0.001). Treatment with 10(-7) M FP significantly reduced IL-13 production in healthy subjects and asthmatic patients both at 48 h (93.6 +/- 18.9 versus 50.50 +/- 10.6 pg/ml, p < 0.001, and 111.0 +/- 25.1 versus 59.3 +/- 13.6 pg/ml, p < 0.001, respectively) and at 72 h (63.9 +/- 9.6 versus 35.5 +/- 4.4 pg/ml, p < 0.001, and 73.3 +/- 8.0 versus 40.7 +/- 4.5 pg/ml, p < 0.001, respectively). Similar results were obtained with 10(-8) M FP at 48 and 72 h. Accordingly, evaluation of RT-PCR products from selected cell samples showed a FP dosage-dependent inhibition of IL-4 and IL-5 mRNA production both for healthy subjects and asthmatic patients. CONCLUSIONS: FP in vitro impairs IL-13 production by PHA-stimulated MNC from asthmatic and control subjects. This strengthens previous suggestions that IL-13 inhibition by steroids may, at least in part, account for their therapeutic effects

    Hypo- and Hyper-Virulent Listeria monocytogenes Clones Persisting in Two Different Food Processing Plants of Central Italy

    Get PDF
    A total of 66 Listeria monocytogenes (Lm) isolated from 2013 to 2018 in a small-scale meat processing plant and a dairy facility of Central Italy were studied. Whole Genome Sequencing and bioinformatics analysis were used to assess the genetic relationships between the strains and investigate persistence and virulence abilities. The biofilm forming-ability was assessed in vitro. Cluster analysis grouped the Lm from the meat plant into three main clusters: two of them, both belonging to CC9, persisted for years in the plant and one (CC121) was isolated in the last year of sampling. In the dairy facility, all the strains grouped in a CC2 four-year persistent cluster. All the studied strains carried multidrug efflux-pumps genetic determinants (sugE, mdrl, lde, norM, mepA). CC121 also harbored the Tn6188 specific for tolerance to Benzalkonium Chloride. Only CC9 and CC121 carried a Stress Survival Islet and presented high-level cadmium resistance genes (cadA1C1) carried by different plasmids. They showed a greater biofilm production when compared with CC2. All the CC2 carried a full-length inlA while CC9 and CC121 presented a Premature Stop Codon mutation correlated with less virulence. The hypo-virulent clones CC9 and CC121 appeared the most adapted to food-processing environments; however, even the hyper-virulent clone CC2 warningly persisted for a long time. The identification of the main mechanisms promoting Lm persistence in a specific food processing plant is important to provide recommendations to Food Business Operators (FBOs) in order to remove or reduce resident Lm

    PTX3 Intercepts Vascular Inflammation in Systemic Immune-Mediated Diseases

    Get PDF
    PTX3 is a prototypic soluble pattern recognition receptor, expressed at sites of inflammation and involved in regulation of the tissue homeostasis. PTX3 systemic levels increase in many (but not all) immune-mediated inflammatory conditions. Research on PTX3 as a biomarker has so far focused on single diseases. Here, we performed a multi-group comparative study with the aim of identifying clinical and pathophysiological phenotypes associated with PTX3 release. PTX3 concentration was measured by ELISA in the plasma of 366 subjects, including 96 patients with giant cell arteritis (GCA), 42 with Takayasu's arteritis (TA), 10 with polymyalgia rheumatica (PMR), 63 with ANCA-associated systemic small vessel vasculitides (AAV), 55 with systemic lupus erythematosus (SLE), 21 with rheumatoid arthritis (RA) and 79 healthy controls (HC). Patients with SLE, AAV, TA and GCA, but not patients with RA and PMR, had higher PTX3 levels than HC. PTX3 concentration correlated with disease activity, acute phase reactants and prednisone dose. It was higher in females, in patients with recent-onset disease and in those with previous or current active vasculitis at univariate analysis. Active small- or large- vessel vasculitis were the main independent variables influencing PTX3 levels at multivariate analysis. High levels of PTX3 in the blood can contribute to identify an increased risk of vascular involvement in patients with systemic immune-mediated diseases

    Increased expression of urokinase plasminogen activator and its cognate receptor in human seminomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The urokinase plasminogen activating system (uPAS) is implicated in neoplastic progression and high tissue levels of uPAS components correlate with a poor prognosis in different human cancers. Despite that, relative few studies are available on the expression and function of the uPAS components in human seminomas. In the present study we characterized the expression of the urokinase plasminogen activator (uPA), its cognate receptor (uPAR) and the uPA inhibitors PAI-1 and PAI-2 in normal human testis and seminomas.</p> <p>Methods</p> <p>The expression of the above genes was evaluated by means of quantitative RT-PCR, western blot, zymographic analysis and immunohistochemistry.</p> <p>Results</p> <p>Quantitative RT-PCR analysis of 14 seminomas demonstrated that uPA and uPAR mRNAs were, with respect to control tissues, increased in tumor tissues by 3.80 ± 0.74 (p < 0.01) and 6.25 ± 1.18 (p < 0.01) fold, respectively. On the other hand, PAI-1 mRNA level was unchanged (1.02 ± 0.24 fold), while that of PAI-2 was significantly reduced to 0.34 ± 0.18 (p < 0.01) fold. Western blot experiments performed with protein extracts of three seminomas and normal tissues from the same patients showed that uPA protein levels were low or undetectable in normal tissues and induced in tumor tissues. On the same samples, zymographic analysis demonstrated increased uPA activity in tumor tissue extracts. Western blot experiments showed that also the uPAR protein was increased in tumor tissues by 1.83 ± 0.15 fold (p < 0.01). The increased expression of uPA and uPAR was further confirmed by immunohistochemical staining performed in 10 seminomas and autologous uninvolved peritumoral tissues. Finally, variation in the mRNA level of PAI-1 significantly correlated with tumor size.</p> <p>Conclusions</p> <p>We demonstrated the increased expression of uPA and uPAR in human seminomas with respect to normal testis tissues, which may be relevant in testicular cancer progression.</p

    A New Current Mode Control for DC-DC Converter

    No full text
    Current-sensing is used widely in smart power chips, especially in DC/DC converter for voltage regulator modules (VRM), implemented with interleaved synchronous rectifier buck converters. The interleaved technique main difficulty is due to its current-sharing control between the several modules. Besides, if the used control technique is current-mode type, it is necessary create a ramp signal proportional to current on the inductor. In this paper, a lossless current-sensing method, solving the major disadvantages of the current-mode control and implementing a current-sharing technique, is proposed. This innovative technique is tested in a two-module interleaved buck converter

    A new model for sigma-delta modulator oriented to digitally controlled dc/dc converter

    No full text
    Recent research activities have shown the feasibility and advantages of using digital controller ICs specifically developed for high-frequency switching converters, highlighting a challenging future trend in Switched-mode power supplies (SMPS) applications. Up to a few years ago, the application of digital control for SMPS was impractical due to the high cost and low performance of DSP and microcontroller systems, even if the advantages that digital controllers offer were well known, such as immunity to analog component variations and ability to implement sophisticated control schemes and system diagnostics. Digital controller ICs potentially offer other advantages from the integrated design point of view, such as faster design process, ease of integration with other digital systems, and lower silicon area and power consumption than standard analog ICs. Digital control is also used for implementation of sophisticated control techniques and adaptive control. This paper presents a new modelling methodology of sigma-delta modulator, based on representing the nonlinear quantizer with a linear factor. Its use in DC/DC power converter systems permits implementation of a complete digital control. The digital control is implemented in a field-programmable gate array (FPGA) using a hardware description language (VHDL), providing flexibility and technology independence. Results of an investigation from a buck converter prototype, in terms of simulated and experimental performances, confirm the properties of the proposed approach
    corecore