310 research outputs found

    A SspI PCR-RFLP detecting a silent allele at the goat CSN2 locus

    Get PDF
    The comparison between the cDNA sequence obtained and the published sequences of the goat CSN2 alleles showed a new single nucleotide polymorphism (SNP) (transition C-T) at the 180th nucleotide of the ninth exon. This mutation, which took place at 124 nt from the polyadenylation site, identifies a silent allele at the CSN2 locus named CSN2 A1. Since the 9th exon C-T transition creates a SspI endonuclease restriction site, the SspI digestion of a PCR product of 360 bp spanning the 9th exon and flanking regions, would allow carriers for the presence of thymine to be identified. The allelic frequency of the CSN2 A1 allele, determined in 170 goats belonging to an undefined genetic type reared in the province of Naples (Italy), was 0.23 It has been observed that the sequences in the 3’ untranslated regions (UTR), proximal to the polyadenylation site, can affect the mechanism of mRNA deadenylation and degradation. Therefore, it is reasonable to hypothesize that the C-T transition might, directly or indirectly, influence the stability of the mRNA and, consequently, the amount of protein produced

    Biogas production from mediterranean crop silages

    Get PDF
    Anaerobic digestion has proven to be an efficient way for the production of a renewable fuel. The aim of this work was to study the potential use of two crop silages, yellow lupine (Lupinus luteus L.) and oilseed radish (Raphanus sativus var. oleifera cv. Pegletta), for the production of biogas through the process of anaerobic digestion. The use of yellow lupine was due to its capacity for nitrogen fixation, reducing the fertilization needs for the succeeding crop cycle and reducing also the GHG emissions due to the fertilizer production and its field application. The utilization of the oilseed radish was due to its root exudates with nematicide effect, reducing the needs for soil disinfection, working as a biological weapon and also due to the effect on soil compaction of its large roots, working as a bio-driller. The yellow lupine gave rise to 400 m3 of CH4.t-1 VS and the oilseed radish silage produced approximately 300 m3 of CH4.t-1 VS, proving to be good anaerobic substrates. The inoculum used for the batch digesters was sludge from an anaerobic digester of a WWTP

    Anaerobic digestion of a fish processing industry sludge

    Get PDF
    Due to the fact that all fish processing plants operating in Portugal send their sludge from the wastewater treatment process to landfill, and because it is a costly management policy, the aim of this work was to assess the potential use of this substrate for the production of biogas through the anaerobic process technology. Anaerobic digestion has long proven to be an efficient way for the production of a renewable fuel – Biogas - that can be used as a source of energy to produce electricity and heat. This renewable energy resource can be used to reduce the plant processing costs, reducing also the industry carbon footprint. So, the produced sludge becomes a valuable sub-product of the wastewater treatment process instead of being considered a waste, with disposal costs associated. In this study we performed mesophilic (35 ± 1°C) batch assays during 51 days. The inoculum used was from an anaerobic digester operating in a municipal WWTP, also at mesophilic conditions. The anaerobic digestion of the fish sludge produced 700 m3 of CH4/ton SV, which is a really promising result

    A point mutation in the splice donor site of intron 7 in the as2-casein encoding gene of the Mediterranean River buffalo results in an allele-specific exon skipping

    Get PDF
    The CSN1S2 cDNA of 10 unrelated Mediterranean River Buffaloes reared in Southern Italy was amplified by RT-PCR, while the region from the 6th to the 8th exon of the CSN1S2 gene was amplified from genomic template. cDNA sequence comparisons showed that five individuals had a normal transcript only (named CSN1S2A), one had a deleted transcript only (named CSN1S2B), because of the splicing out of the 27-bp of exon 7, and the remaining four had a heterozygous pattern. Analysis of the genomic sequences revealed a FM865620: g.773G>C transversion that caused inactivation of the intron 7 splice donor site and, consequently, the allele-specific exon skipping characteristic of the CSN1S2B allele. The g.773G>C mutation creates a new AluI restriction site enabling a PCR– RFLP rapid genotyping assay. The cDNA sequences showed three additional exonic mutations forming an extended haplotype with the g.773G>C polymorphism: FM865618: c.459C>T, c.484A>T and c.568A>G homozygous and heterozygous respectively in the CSN1S2BB and CSN1S2AB buffaloes. The first is silent, while the remaining two are non-conservative (p.Ile162Phe and p.Thp200Ala respectively). The genotype frequencies (37 CSN1S2A/A, 15 CSN1S2A/B and one CSN1S2B/B) are in agreement with Hardy–Weinberg equilibrium, with the frequency of the deleted B allele being 0.16. The predicted bubaline as2B protein is 198 aa long instead of 207 aa and would also be characterized by the presence of Phe at position 147 and Ala at 185
    • …
    corecore