952 research outputs found
Theoretical study of ferroelectric potassium nitrate
We present a detailed study of the structural behavior and polarization
reversal mechanism in phase III of KNO, an unusual ferroelectric material
in which the nitrate groups rotate during polarization reversal. This material
was one of several studied in a previous work [O. Di\'eguez and D. Vanderbilt,
Phys. Rev. Lett. {\bf 96}, 056401 (2006)] where methods were described for
computing curves of energy versus electric polarization. In the present work we
extend and systematize the previous first-principles calculations on KNO,
and analyze in detail a two-parameter model in which the energy of the system
is written as a low-order expansion in the polarization and the nitrate group
orientation. We confirm that this model reproduces the first-principles results
for KNO very well and construct its parameter-space phase diagram,
describing regions where unusual triple-well potentials appear. We also present
first-principles calculations of KNO under pressure, finding that its
energy-versus-polarization curves change character by developing a
first-derivative discontinuity at zero polarization.Comment: Replaced with extended versio
Wannier-based definition of layer polarizations in perovskite superlattices
In insulators, the method of Marzari and Vanderbilt [Phys. Rev. B {\bf 56},
12847 (1997)] can be used to generate maximally localized Wannier functions
whose centers are related to the electronic polarization. In the case of
layered insulators, this approach can be adapted to provide a natural
definition of the local polarization associated with each layer, based on the
locations of the nuclear charges and one-dimensional Wannier centers comprising
each layer. Here, we use this approach to compute and analyze layer
polarizations of ferroelectric perovskite superlattices, including changes in
layer polarizations induced by sublattice displacements (i.e., layer-decomposed
Born effective charges) and local symmetry breaking at the interfaces. The
method provides a powerful tool for analyzing the polarization-related
properties of complex layered oxide systems
Geiger-Mode Avalanche Photodiodes in Particle Detection
It is well known that avalanche photodiodes operated in the Geiger mode above
the breakdown voltage offer a virtually infinite sensitivity and time accuracy
in the picosecond range that can be used for single photon detection. However,
their performance in particle detection remains still unexplored. In this
contribution, we are going to expose the different steps that we have taken in
order to prove the efficiency of Geiger mode avalanche photodiodes in the
aforementioned field. In particular, we will present an array of pixels of
1mmx1mm fabricated with a standard CMOS technology for characterization in a
test beam.Comment: 7 pages, 2 figures, Proceedings of LCWS1
First-principles study of epitaxial strain in perovskites
Using an extension of a first-principles method developed by King-Smith and
Vanderbilt [Phys. Rev. B {\bf 49}, 5828 (1994)], we investigate the effects of
in-plane epitaxial strain on the ground-state structure and polarization of
eight perovskite oxides: BaTiO, SrTiO, CaTiO, KNbO, NaNbO,
PbTiO, PbZrO, and BaZrO. In addition, we investigate the effects of
a nonzero normal stress. The results are shown to be useful in predicting the
structure and polarization of perovskite oxide thin films and superlattices.Comment: 10 page
Ab initio study of the phase diagram of epitaxial BaTiO3
Using a combination of first-principles and effective-Hamiltonian approaches,
we map out the structure of BaTiO3 under epitaxial constraints applicable to
growth on perovskite substrates. We obtain a phase diagram in temperature and
misfit strain that is qualitatively different from that reported by Pertsev et
al. [Phys. Rev. Lett. 80, 1988 (1998)], who based their results on an empirical
thermodynamic potential with parameters fitted at temperatures in the vicinity
of the bulk phase transitions. In particular, we find a region of `r phase' at
low temperature where Pertsev et al. have reported an `ac phase'. We expect our
results to be relevant to thin epitaxial films of BaTiO3 at low temperatures
and experimentally-achievable strains.Comment: 4 pages, with 4 postscript figures embedded. Uses REVTEX and epsf
macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/od_epi/index.htm
Experimental Study of Tapping Wear Mechanisms on Nodular Cast Iron
AbstractTapping by cutting is one of the most common operations in manufacturing. This multi-teeth tool, known as a tap, cuts the thread in a hole when the piece has a high added value. The thread quality is ensured when the tap is new or slightly worn, yet when tap wear is high; the quality of profiles exceeds tolerance limits and therefore a defect occurs in the manufacturing line.The aim of this paper is to study the tap wear of titanium nitride coated taps measured on nodular cast iron. The level of tap wear is determined by optical images and the wear mechanics are classified by scanning images and energy dispersion spectroscopy analysis. The results highlight that the critical part in measured taps is between the last chamfer and the first cylinder teeth and, consequently, the thread profile is under-sized. Beside adhesive wear, coating removal and chipping are the main wear aspects during tapping operations
Megalitismo y medio edafológico en el noroeste peninsular
[Resumen] Se estudia la relación existente entre la distribución de tumbas megalÃticas y las caracteristicas de los suelos en la provincia de La Coruña. Las mayores concentraciones de túmulos y la presencia de los de mayor tamaño están relacionadas con los suelos más aptos para el cultivo. Por el contrario en zonas con suelos poco aptos para la agricultura los túmulos son más escasos y de menor tamaño.[Abstract] The relations between the distribution of megali thic graves and the soil characteristics in the province of La Coruña are studied. The highest concentrations of tombs and the biggest ones are related to the best soils for the agriculture. On contrary in zones with poor soi ls the graves are less abundant and of smallest siz
The importance of meteorological scales to forecast air pollution scenarios on coastal complex terrain
Some of the meteorological approaches commonly considered in urban air pollution models do not take into account the importance of the smaller scales in the meteorology of complex-terrain coastal sites. The aim of this work is to estimate the impact of using the proper meteorological scales when simulating the behaviour of the pollutant concentrations emitted in the lower layers over coastal complex terrain areas. The availability of experimental measurements of a power plant plume near the Castellón conurbation (on the Spanish Mediterranean coast) has allowed us to use this plume as a tracer of opportunity of the lower atmosphere to check the results of a simulation exercise using the RAMS mesoscale model coupled to the HYPACT particle model. The results obtained show that in a complex-terrain coastal site, because of the strong effect of the meteorological interactions between the different scales on the integral advection and the turbulent dispersion of pollutants, using an inadequate scale to solve the meteorology can result in a very big gap in the simulation of lower-layer pollutant behaviour at urban scales
- …