6,925 research outputs found
Reconstructing propagation networks with natural diversity and identifying hidden sources
Our ability to uncover complex network structure and dynamics from data is
fundamental to understanding and controlling collective dynamics in complex
systems. Despite recent progress in this area, reconstructing networks with
stochastic dynamical processes from limited time series remains to be an
outstanding problem. Here we develop a framework based on compressed sensing to
reconstruct complex networks on which stochastic spreading dynamics take place.
We apply the methodology to a large number of model and real networks, finding
that a full reconstruction of inhomogeneous interactions can be achieved from
small amounts of polarized (binary) data, a virtue of compressed sensing.
Further, we demonstrate that a hidden source that triggers the spreading
process but is externally inaccessible can be ascertained and located with high
confidence in the absence of direct routes of propagation from it. Our approach
thus establishes a paradigm for tracing and controlling epidemic invasion and
information diffusion in complex networked systems.Comment: 20 pages and 5 figures. For Supplementary information, please see
http://www.nature.com/ncomms/2014/140711/ncomms5323/full/ncomms5323.html#
Phase transitions in Ising model induced by weight redistribution on weighted regular networks
In order to investigate the role of the weight in weighted networks, the
collective behavior of the Ising system on weighted regular networks is studied
by numerical simulation. In our model, the coupling strength between spins is
inversely proportional to the corresponding weighted shortest distance.
Disordering link weights can effectively affect the process of phase transition
even though the underlying binary topological structure remains unchanged.
Specifically, based on regular networks with homogeneous weights initially,
randomly disordering link weights will change the critical temperature of phase
transition. The results suggest that the redistribution of link weights may
provide an additional approach to optimize the dynamical behaviors of the
system.Comment: 6 pages, 5 figure
Characterizing and Modeling the Dynamics of Activity and Popularity
Social media, regarded as two-layer networks consisting of users and items,
turn out to be the most important channels for access to massive information in
the era of Web 2.0. The dynamics of human activity and item popularity is a
crucial issue in social media networks. In this paper, by analyzing the growth
of user activity and item popularity in four empirical social media networks,
i.e., Amazon, Flickr, Delicious and Wikipedia, it is found that cross links
between users and items are more likely to be created by active users and to be
acquired by popular items, where user activity and item popularity are measured
by the number of cross links associated with users and items. This indicates
that users generally trace popular items, overall. However, it is found that
the inactive users more severely trace popular items than the active users.
Inspired by empirical analysis, we propose an evolving model for such networks,
in which the evolution is driven only by two-step random walk. Numerical
experiments verified that the model can qualitatively reproduce the
distributions of user activity and item popularity observed in empirical
networks. These results might shed light on the understandings of micro
dynamics of activity and popularity in social media networks.Comment: 13 pages, 6 figures, 2 table
- …