65 research outputs found
Uncovering Group Level Insights with Accordant Clustering
Clustering is a widely-used data mining tool, which aims to discover
partitions of similar items in data. We introduce a new clustering paradigm,
\emph{accordant clustering}, which enables the discovery of (predefined) group
level insights. Unlike previous clustering paradigms that aim to understand
relationships amongst the individual members, the goal of accordant clustering
is to uncover insights at the group level through the analysis of their
members. Group level insight can often support a call to action that cannot be
informed through previous clustering techniques. We propose the first accordant
clustering algorithm, and prove that it finds near-optimal solutions when data
possesses inherent cluster structure. The insights revealed by accordant
clusterings enabled experts in the field of medicine to isolate successful
treatments for a neurodegenerative disease, and those in finance to discover
patterns of unnecessary spending.Comment: accepted to SDM 2017 (oral
Efficient Data Representation by Selecting Prototypes with Importance Weights
Prototypical examples that best summarizes and compactly represents an
underlying complex data distribution communicate meaningful insights to humans
in domains where simple explanations are hard to extract. In this paper we
present algorithms with strong theoretical guarantees to mine these data sets
and select prototypes a.k.a. representatives that optimally describes them. Our
work notably generalizes the recent work by Kim et al. (2016) where in addition
to selecting prototypes, we also associate non-negative weights which are
indicative of their importance. This extension provides a single coherent
framework under which both prototypes and criticisms (i.e. outliers) can be
found. Furthermore, our framework works for any symmetric positive definite
kernel thus addressing one of the key open questions laid out in Kim et al.
(2016). By establishing that our objective function enjoys a key property of
that of weak submodularity, we present a fast ProtoDash algorithm and also
derive approximation guarantees for the same. We demonstrate the efficacy of
our method on diverse domains such as retail, digit recognition (MNIST) and on
publicly available 40 health questionnaires obtained from the Center for
Disease Control (CDC) website maintained by the US Dept. of Health. We validate
the results quantitatively as well as qualitatively based on expert feedback
and recently published scientific studies on public health, thus showcasing the
power of our technique in providing actionability (for retail), utility (for
MNIST) and insight (on CDC datasets) which arguably are the hallmarks of an
effective data mining method.Comment: Accepted for publication in International Conference on Data Mining
(ICDM) 201
- …