65 research outputs found

    Uncovering Group Level Insights with Accordant Clustering

    Full text link
    Clustering is a widely-used data mining tool, which aims to discover partitions of similar items in data. We introduce a new clustering paradigm, \emph{accordant clustering}, which enables the discovery of (predefined) group level insights. Unlike previous clustering paradigms that aim to understand relationships amongst the individual members, the goal of accordant clustering is to uncover insights at the group level through the analysis of their members. Group level insight can often support a call to action that cannot be informed through previous clustering techniques. We propose the first accordant clustering algorithm, and prove that it finds near-optimal solutions when data possesses inherent cluster structure. The insights revealed by accordant clusterings enabled experts in the field of medicine to isolate successful treatments for a neurodegenerative disease, and those in finance to discover patterns of unnecessary spending.Comment: accepted to SDM 2017 (oral

    Efficient Data Representation by Selecting Prototypes with Importance Weights

    Full text link
    Prototypical examples that best summarizes and compactly represents an underlying complex data distribution communicate meaningful insights to humans in domains where simple explanations are hard to extract. In this paper we present algorithms with strong theoretical guarantees to mine these data sets and select prototypes a.k.a. representatives that optimally describes them. Our work notably generalizes the recent work by Kim et al. (2016) where in addition to selecting prototypes, we also associate non-negative weights which are indicative of their importance. This extension provides a single coherent framework under which both prototypes and criticisms (i.e. outliers) can be found. Furthermore, our framework works for any symmetric positive definite kernel thus addressing one of the key open questions laid out in Kim et al. (2016). By establishing that our objective function enjoys a key property of that of weak submodularity, we present a fast ProtoDash algorithm and also derive approximation guarantees for the same. We demonstrate the efficacy of our method on diverse domains such as retail, digit recognition (MNIST) and on publicly available 40 health questionnaires obtained from the Center for Disease Control (CDC) website maintained by the US Dept. of Health. We validate the results quantitatively as well as qualitatively based on expert feedback and recently published scientific studies on public health, thus showcasing the power of our technique in providing actionability (for retail), utility (for MNIST) and insight (on CDC datasets) which arguably are the hallmarks of an effective data mining method.Comment: Accepted for publication in International Conference on Data Mining (ICDM) 201
    • …
    corecore