15 research outputs found
Numerical modeling of Hemodynamics in the thoracic aorta and alterations by Dacron patch treatment of Aortic Coarctation
Coarctation of the aorta (CoA) is a major congenital heart disease, characterized by a severe stenosis of the proximal descending thoracic aorta. Traditionally, surgery has been the treatment of choice for CoA. Dacron patch aortoplasty gained increased popularity after its introduction in the mid-twentieth century due to its advantages over other surgical treatment methods available at the time. A major complication with Dacron patch aortoplasty has been the formation of late aneurysm with as much as 51% incidence reported in follow up studies. The change in aortic morphology and formation of aneurysms after Dacron patch surgery could lead to local adverse changes in hemodynamic conditions which have been correlated to long term morbidity. No study to date has investigated the local hemodynamics in the human thoracic aorta and the alterations occurring in thoracic aorta of Dacron patients in detail. Computational fluid dynamics (CFD) can be used to elucidate local hemodynamics in the thoracic aorta of Normal subjects and surgically treated CoA patients. We tested the hypothesis that Dacron patch aortoplasty causes alterations in vessel wall geometry and hemodynamic indices in the thoracic aorta of CoA patients.
Patient specific CFD models were constructed for six Normal, and six age and gender matched Dacron patients. CFD simulations were performed with physiologic boundary conditions to quantify hemodynamic indices. Localized quantification of simulation results for time-averaged wall shear stress (TAWSS) and oscillatory shear index (OSI) was conducted to obtain axial and circumferential plots at various spatial locations in the thoracic aorta.
Velocity streamlines and vectors quantified from simulation results for Normal subjects were similar to the flow patterns demonstrated previously using medical imaging techniques. Spatial representations of instantaneous and time-averaged WSS as well as OSI were reflective of these velocity results. Alterations in patterns of velocity streamlines, vectors, TAWSS and OSI were observed for Dacron patients with respect to Normal subjects. Altered axial and circumferential patterns of TAWSS and OSI were also demonstrated for Dacron patients by localized quantification. These results may ultimately facilitate greater understanding if sites of long-term morbidity in Dacron patients correspond with these hemodynamic alterations during follow-up
Quantification of Local Hemodynamic Alterations Caused by Virtual Implantation of Three Commercially Available Stents for the Treatment of Aortic Coarctation
Patients with coarctation of the aorta (CoA) are prone to morbidity including atherosclerotic plaque that has been shown to correlate with altered wall shear stress (WSS) in the descending thoracic aorta (dAo). We created the first patient-specific computational fluid dynamics (CFD) model of a CoA patient treated by Palmaz stenting to date, and compared resulting WSS distributions to those from virtual implantation of Genesis XD and modified NuMED CP stents, also commonly used for CoA. CFD models were created from magnetic resonance imaging, fluoroscopy and blood pressure data. Simulations incorporated vessel deformation, downstream vascular resistance and compliance to match measured data and generate blood flow velocity and time-averaged WSS (TAWSS) results. TAWSS was quantified longitudinally and circumferentially in the stented region and dAo. While modest differences were seen in the distal portion of the stented region, marked differences were observed downstream along the posterior dAo and depended on stent type. The Genesis XD model had the least area of TAWSS values exceeding the threshold for platelet aggregation in vitro, followed by the Palmaz and NuMED CP stents. Alterations in local blood flow patterns and WSS imparted on the dAo appear to depend on the type of stent implanted for CoA. Following confirmation in larger studies, these findings may aid pediatric interventional cardiologists in selecting the most appropriate stent for each patient, and ultimately reduce long-term morbidity following treatment for CoA by stenting
A Coupled Experimental and Computational Approach to Quantify Deleterious Hemodynamics, Vascular Alterations, and Mechanisms of Long-Term Morbidity in Response to Aortic Coarctati
Introduction
Coarctation of the aorta (CoA) is associated with morbidity despite treatment. Although mechanisms remain elusive, abnormal hemodynamics and vascular biomechanics are implicated. We present a novel approach that facilitates quantification of coarctation-induced mechanical alterations and their impact on vascular structure and function, without genetic or confounding factors. Methods
Rabbits underwent thoracic CoA at 10 weeks of age (~ 9 human years) to induce a 20 mm Hg blood pressure (BP) gradient using permanent or dissolvable suture thereby replicating untreated and corrected CoA. Computational fluid dynamics (CFD) was performed using imaging and BP data at 32 weeks to quantify velocity, strain and wall shear stress (WSS) for comparison to vascular structure and function as revealed by histology and myograph results. Results
Systolic and mean BP was elevated in CoA compared to corrected and control rabbits leading to vascular thickening, disorganization and endothelial dysfunction proximally and distally. Corrected rabbits had less severe medial thickening, endothelial dysfunction, and stiffening limited to the proximal region despite 12 weeks of normal BP (~ 4 human years) after the suture dissolved. WSS was elevated distally for CoA rabbits, but reduced for corrected rabbits. Discussion These findings are consistent with alterations in humans. We are now poised to investigate mechanical contributions to mechanisms of morbidity in CoA using these methods
Computational simulations demonstrate altered wall shear stress in aortic coarctation patients previously treated by resection with end-to-end anastomosis
Background.  Atherosclerotic plaque in the descending thoracic aorta (dAo) is related to altered wall shear stress (WSS) for normal patients. Resection with end-to-end anastomosis (RWEA) is the gold standard for coarctation of the aorta (CoA) repair, but may lead to altered WSS indices that contribute to morbidity.
Methods.  Computational fluid dynamics (CFD) models were created from imaging and blood pressure data for control subjects and age- and gender-matched CoA patients treated by RWEA (four males, two females, 15 ± 8 years). CFD analysis incorporated downstream vascular resistance and compliance to generate blood flow velocity, time-averaged WSS (TAWSS), and oscillatory shear index (OSI) results. These indices were quantified longitudinally and circumferentially in the dAo, and several visualization methods were used to highlight regions of potential hemodynamic susceptibility.
Results.  The total dAo area exposed to subnormal TAWSS and OSI was similar between groups, but several statistically significant local differences were revealed. Control subjects experienced left-handed rotating patterns of TAWSS and OSI down the dAo. TAWSS was elevated in CoA patients near the site of residual narrowings and OSI was elevated distally, particularly along the left dAo wall. Differences in WSS indices between groups were negligible more than 5 dAo diameters distal to the aortic arch.
Conclusions.  Localized differences in WSS indices within the dAo of CoA patients treated by RWEA suggest that plaque may form in unique locations influenced by the surgical repair. These regions can be visualized in familiar and intuitive ways allowing clinicians to track their contribution to morbidity in longitudinal studies
Towards Automatic Prediction of Outcome in Treatment of Cerebral Aneurysms
Intrasaccular flow disruptors treat cerebral aneurysms by diverting the blood
flow from the aneurysm sac. Residual flow into the sac after the intervention
is a failure that could be due to the use of an undersized device, or to
vascular anatomy and clinical condition of the patient. We report a machine
learning model based on over 100 clinical and imaging features that predict the
outcome of wide-neck bifurcation aneurysm treatment with an intravascular
embolization device. We combine clinical features with a diverse set of common
and novel imaging measurements within a random forest model. We also develop
neural network segmentation algorithms in 2D and 3D to contour the sac in
angiographic images and automatically calculate the imaging features. These
deliver 90% overlap with manual contouring in 2D and 83% in 3D. Our predictive
model classifies complete vs. partial occlusion outcomes with an accuracy of
75.31%, and weighted F1-score of 0.74.Comment: 10 page
Cardiovascular Magnetic Resonance Imaging-Based Computational Fluid Dynamics/Fluid-Structure Interaction Pilot Study to Detect Early Vascular Changes in Pediatric Patients with Type 1 Diabetes
We hypothesized that pediatric patients with type 1 diabetes have cardiac magnetic resonance (CMR) detectable differences in thoracic aortic wall properties and hemodynamics leading to significant local differences in indices of wall shear stress, when compared with age-matched control subjects without diabetes. Pediatric patients with type 1 diabetes were recruited from Children’s Hospital of Wisconsin and compared with controls. All underwent morning CMR scanning, 4-limb blood pressure, brachial artery reactivity testing, and venipuncture. Patient-specific computational fluid dynamics modeling with fluid–structure interaction, based on CMR data, determined regional time-averaged wall shear stress (TAWSS) and oscillatory shear index (OSI). Twenty type 1 diabetic subjects, median age 15.8 years (11.6–18.4) and 8 controls 15.4 years (10.3–18.2) were similar except for higher glucose, hemoglobin A1c, and triglycerides for type 1 diabetic subjects. Lower flow-mediated dilation was seen for those with type 1 diabetes (6.5) versus controls (7.8), p = 0.036. For type 1 diabetic subjects, the aorta had more regions with high TAWSS when compared to controls. OSI maps appeared similar. Flow-mediated dilation positively correlated with age at diabetes diagnosis (r = 0.468, p = 0.038) and hemoglobin A1c (r = 0.472, p = 0.036), but did not correlate with aortic distensibility, TAWSS, or OSI. TAWSS did not correlate with any clinical parameter for either group. CMR shows regional differences in aortic wall properties for young diabetic patients. Some local differences in wall shear stress indices were also observed, but a longitudinal study is now warranted
Computational Fluid Dynamics Evaluation of Equivalency in Hemodynamic Alterations Between Driver, Integrity, and Similar Stents Implanted Into an Idealized Coronary Artery
We tested the hypothesis that a slight modification in fabrication from the Driver to the Integrity stent (Medtronic) results in nearly equivalent distributions of wall shear stress (WSS) and mean exposure time (MET), reflective of flow stagnation, and that these differences are considerably less than the Multi-Link Vision (Abbott Vascular) or BX Velocity (Cordis) bare metal stents when evaluated by computational fluid dynamics (CFD). Arteries were modeled as idealized straight rigid vessels without lesions. Two vessel diameters (2.25 and 3.0 mm) were studied for each stent and 2.75 mm diameter Integrity stents were also modeled to quantify the impact from best- and worst-case orientations of the stent struts relative to the primary blood flow direction. All stents were 18 mm in length and over-deployed by 10%. The results indicated that, regardless of diameter, the BX Velocity stents had the greatest percentage of the vessel exposed to adverse WSS followed by the Vision, Integrity, and Driver stents. In general, when strut thickness and stent:lumen ratio are similar, the orientation of struts is a determining factor for deleterious flow patterns. For a given stent, the number of struts was a larger determinant of adverse WSS and MET than strut orientation, suggesting that favorable blood flow patterns can be achieved by limiting struts to those providing adequate scaffolding. In conclusion, the Driver and Integrity stents both limit their number of linkages to those which provide adequate scaffolding while also maintaining similar strut thickness and stent:lumen ratios. The Integrity stent also imparts a slight helical velocity component. The modest difference in the fabrication approach between the Driver and Integrity stents is, therefore, not hemodynamically substantial in this idealized analysis, particularly relative to potentially adverse flow conditions introduced by the other stents modeled. This data was used in conjunction with associated regulatory filings and submitted to the FDA as part of the documents facilitating the recent approval for sale of the Resolute Integrity stent in the United States