5 research outputs found

    Untargeted high-resolution plasma metabolomic profiling predicts outcomes in patients with coronary artery disease.

    No full text
    OBJECTIVE:Patients with CAD have substantial residual risk of mortality, and whether hitherto unknown small-molecule metabolites and metabolic pathways contribute to this risk is unclear. We sought to determine the predictive value of plasma metabolomic profiling in patients with CAD. APPROACH AND RESULTS:Untargeted high-resolution plasma metabolomic profiling of subjects undergoing coronary angiography was performed using liquid chromatography/mass spectrometry. Metabolic features and pathways associated with mortality were identified in 454 subjects using metabolome-wide association studies and Mummichog, respectively, and validated in 322 subjects. A metabolomic risk score comprising of log-transformed HR estimates of metabolites that associated with mortality and passed LASSO regression was created and its performance validated. In 776 subjects (66.8 years, 64% male, 17% Black), 433 and 357 features associated with mortality (FDR-adjusted q<0.20); and clustered into 21 and 9 metabolic pathways in first and second cohorts, respectively. Six pathways (urea cycle/amino group, tryptophan, aspartate/asparagine, lysine, tyrosine, and carnitine shuttle) were common. A metabolomic risk score comprising of 7 metabolites independently predicted mortality in the second cohort (HR per 1-unit increase 2.14, 95%CI 1.62, 2.83). Adding the score to a model of clinical predictors improved risk discrimination (delta C-statistic 0.039, 95%CI -0.006, 0.086; and Integrated Discrimination Index 0.084, 95%CI 0.030, 0.151) and reclassification (continuous Net Reclassification Index 23.3%, 95%CI 7.9%, 38.2%). CONCLUSIONS:Differential regulation of six metabolic pathways involved in myocardial energetics and systemic inflammation is independently associated with mortality in patients with CAD. A novel risk score consisting of representative metabolites is highly predictive of mortality

    Global change in hepatitis C virus prevalence and cascade of care between 2015 and 2020: a modelling study

    No full text
    Background Since the release of the first global hepatitis elimination targets in 2016, and until the COVID-19 pandemic started in early 2020, many countries and territories were making progress toward hepatitis C virus (HCV) elimination. This study aims to evaluate HCV burden in 2020, and forecast HCV burden by 2030 given current trends. Methods This analysis includes a literature review, Delphi process, and mathematical modelling to estimate HCV prevalence (viraemic infection, defined as HCV RNA-positive cases) and the cascade of care among people of all ages (age ≥0 years from birth) for the period between Jan 1, 2015, and Dec 31, 2030. Epidemiological data were collected from published sources and grey literature (including government reports and personal communications) and were validated among country and territory experts. A Markov model was used to forecast disease burden and cascade of care from 1950 to 2050 for countries and territories with data. Model outcomes were extracted from 2015 to 2030 to calculate population-weighted regional averages, which were used for countries or territories without data. Regional and global estimates of HCV prevalence, cascade of care, and disease burden were calculated based on 235 countries and territories. Findings Models were built for 110 countries or territories: 83 were approved by local experts and 27 were based on published data alone. Using data from these models, plus population-weighted regional averages for countries and territories without models (n=125), we estimated a global prevalence of viraemic HCV infection of 0·7% (95% UI 0·7–0·9), corresponding to 56·8 million (95% UI 55·2–67·8) infections, on Jan 1, 2020. This number represents a decrease of 6·8 million viraemic infections from a 2015 (beginning of year) prevalence estimate of 63·6 million (61·8–75·8) infections (0·9% [0·8–1·0] prevalence). By the end of 2020, an estimated 12·9 million (12·5–15·4) people were living with a diagnosed viraemic infection. In 2020, an estimated 641000 (623000–765000) patients initiated treatment. Interpretation At the beginning of 2020, there were an estimated 56·8 million viraemic HCV infections globally. Although this number represents a decrease from 2015, our forecasts suggest we are not currently on track to achieve global elimination targets by 2030. As countries recover from COVID-19, these findings can help refocus efforts aimed at HCV elimination

    Global change in hepatitis C virus prevalence and cascade of care between 2015 and 2020 : a modelling study

    No full text
    corecore