23 research outputs found

    Studies on cultural conditions of marine Chromatium buderi Truper and Jannasch 1968

    Get PDF
    Photosynthetic characteristics of a purple sulfur bacterium, Chromatium buderi, cultured under different ranges of pH, temperature, light intensities and ammonium chloride concentrations were examined. Maximum bacteriochlorophyll a synthesis was observed at pH 6.5 whereas the optimum growth was at pH 8.0. In general, higher temperature tended to inhibit the chlorophyll a synthesis and growth. 30°C is the optimum temperature both for chlorophyll a synthesis and growth. At 25µE mˉ²Sˉ¹ the bacteriochlorophyll a content and growth attained maximum level. The response to this low light intensity is an adaptation that ensures a high photosynthetic rate for the purple sulfur bacterium that usually occurs in dimly lit environment. Besides these, ammonium chloride at low concentration enhances both chlorophyll a synthesis and growth. Above 0.5% of it causes the nitrogen-chlorosis and also retards the growth of the bacterium. Possible chemical and structural mechanisms involved are discussed

    Arylsulfatase activity in marine polychaetes

    Get PDF
    Marine polychaetes, collected from the Vellar Estuary exhibited arylsulfatase activity. Lumbriconeries sp. Polydora sp. Monojis sp. and Heteromastus sp. were selected for this study. Of these, Heteromastus sp. showed maximum enzymatic activity and it has been chosen for the enzyme kinetic studies such as pH, optimal temperature, period of incubation and the effect of DDT. Enzyme activity showed single peak at pH 6.2 possibly indicating the presence of one type of arylsulfatase. Maximum activity was attained after 12h of incubation at 29°C. DDT has an inhibiting effect on the arylsulfatase activity even at the concentration of 10 p.p.m. and the activity was completely lost at 100 p.p.m

    Photosynthetic bacteria in the marine environment at Porto-Novo

    Get PDF
    Sediment and water samples were collected from mangrove and estuarine biotopes at fortnightly intervals. The physico-chemical characters of the overlying water were studied. In the mangrove biotope maximum temperature (31.5°C) and in the estuarine biotope maximum salinity (35.6‰) were recorded during the summer season, whereas in post-monsoon period the sulphate content was increased to 516 p.p.m. and the pH was reduced to 7.4. Invariably both in the enriched sediment and water samples four major peaks (at wavelengths 460, 705, 772 and 850 nm) and two minor peaks (at wavelengths 580 and 663 nm) of absorption spectra were noticed. A pure culture of Chromatium sp., isolated from mangroves sediment, showed three peaks of absorption spectra at wavelengths, 500, 580 and 850 nm. The effect of sodium chloride on the growth of Chromatium sp., was also studied and it was observed that maximum growth occurred in the range 1-3% sodium chloride concentration. This isolate was also capable of utilizing various sulphur and carbon compounds. Glycerol and glucose did not show any specific effect whereas pyruvate, malate and acetate increased the growth

    Cultural conditions of arylsulfatase activity in Escherichia coli

    Get PDF
    Arylsulfatase activity and growth were estimated in Escherichia coli, isolated from marine sediment. Maximum activity was observed at pH 6.6 whereas the maximum growth was at pH 5.6. 2x10ˉ³ M is the optimum substrate concentration for the highest level of enzyme activity/synthesis as well as for its growth. In general higher substrate concentration tended to inhibit enzyme activity and also the growth of the bacterium. Maximum growth and highest enzyme activity occurred at 29°C and above this temperature decreased both of them. Besides these, glucose, sodium sulfate, sodium chloride, sodium dihydrogen phosphate, sodium acetate and ammonium chloride at higher concentrations were inhibiting the enzyme activity and growth. Above 0.2% of glucose, 3% of sodium chloride, 10x10ˉ³ M concentrations of sodium sulfate, sodium dihydrogen phosphate, sodium acetate and ammonium chloride inhibited the activity and growth also. These observations indicate that, to generalize a compound as inhibitor or activator it is difficult since this depends not only on its concentration but also on the source of the enzyme when more than one type is encountered in nature

    Inactivation of luminous Vibrio spp. by free chlorine

    Get PDF
    In vitro inactivation of penaeid shrimp larval pathogens, Vibrio iiarveyi and V splendidus biovar 1, by free chlorine and the influence of organic matter on the bactericidal activity of chlorine were assessed. More than 5 log unit (>99.99%) reduction in luminous bacteria from >= log 6.00/ml within the first 60 sec of exposure to free chlorine at 1 ppm level was observed. Chlorine was ineffective at <50 ppm levels to inhibit luminous Vibrio spp in the presence of 0.1% peptone as interfering organic agent. These results revealed that luminous bacteria are highly susceptible to chlorine but the bactericidal activity of chlorine is affected by organic substance

    Arylsulfatase - producing bacteria in marine sediments

    Get PDF
    A total of 313 strains of bacteria which hydrolysed tripotassium phenolphthalein disulfate (PDS) were isolated from the sediments of three biotopes, namely, Vellar estuary, backwater and mangrove during the period of investigation. They were identified to the generic level. The following genera were encountered, namely, Vibrio, Bacillus, Alcaligenes, Micrococcus, Pseudomonas, Cytophaga-Flavobacterium, Aeromonas, Corynebacterium and members of Enterobacteriaceae. Vibrio and Bacillus were found to be the dominant groups representing 29.26% and 41.80% respectively of the total isolates. Because of the importance of the Vibrio group in marine environment these isolates were further identified to the species level and it included V. parahaemolyticus, V. alginolyticus, V. consticola, V. anguillarum and V. fischeri. These observations suggest that different groups of arylsulfatase – producing bacteria probably occur in marine sediments

    Genetic analysis of antibiotic production and other phenotypic traits from Streptomyces associated with seaweeds

    Get PDF
    The Gram-positive bacterium such as streptomycetes known for its production of a diverse array of biotechnologically important secondary metabolites, have major application in health, nutrition and economics of our society. There are limited studies on the genetics of streptomycetes, especially seaweed associated Streptomyces sp. So, the present study made an attempt to study the genetics of production of antibiotic and other phenotypic properties was demonstrated by plasmid DNA curing analysis. The DNA-intercalating agent ethidium bromide was used to eliminate plasmid DNA from streptomycetes and effects of curing agent (EB) on the antibiotic production and loss of other phenotypic traits such as aerial and substrate mycelial production, biomass production, protein synthesis were studied. The study demonstrates that the ethidium bromide is potent and probably region-specific mutagens that are capable of inducing high rates of plasmid loss (curing), production of antibiotics was not eliminated, but was reduced by 20.2-79.8% and extracellular protein of 26 KDa mol.wt. was unaffected by curing agents. Data suggests that production of antibiotics and other phenotypic traits likely chromosomally encoded in marine Streptomyces species. The study concludes that the new methodologies such as mutasynthesis have contributed substantially to the discovery of additional antibiotics as an added feather to the scope of antibiotic industry.Keywords: Plasmids, genetics of Streptomyces, curing, phenotypic traits, antibiotic production.African Journal of Biotechnology Vol 13(26) 2648-266

    INFLUENCE OF AGUATIC MACROPHYTE AND MICROBIAL SILAGE ON THE GROWTH AND CONVERSION EFFICIENCY OF OREOCHROMIS MOSSAMBICUS (PETERS)

    No full text
    The aquatic weeds like Eichhornia sp. and Pistia sp. were tested as feed staffs to replace fish meal in the artificial diet of the fish Oreochromis mossambicus (Peters). Both powdered form and microbial enriched silage were tested. The results showed significant growth, better conversion efficiency, high protein content in the fish than those fed on control diet. It is suggested that the aquatic macrophyte can replace the costly fish meal to a certain possible extent in the formulated diets. &nbsp
    corecore