4 research outputs found
Recommended from our members
Calorimetric investigation on heat release during the disintegration process of pharmaceutical tablets.
The compendial USP disintegration test method offers a crucial pass/fail assessment for immdiate release tablet disintegration. However, its single end-point approach provides limited insight into underlying mechanisms. This study introduces a novel calorimetric approach, aimed at providing comprehensive process profiles beyond binary outcomes. We developed a novel disintegration reaction calorimeter to monitor the heat release throughout the disintegration process and successfully obtained enthalpy change profiles of placebo tablets with various porosities. The formulation comprised microcrystalline cellulose (MCC), anhydrous lactose, croscarmellose sodium (CCS), and magnesium stearate (MgSt). An abrupt temperature rise was observed after introducing the disintegration medium to tablets, and the relationship between the heat rise time and the tablet's porosity was investigated. The calorimeter's sensitivity was sufficient to discern distinct heat changes among individual tablets, and the analysis revealed a direct correlation between the two. Higher porosity corresponded to shorter heat rise time, indicating faster disintegration rates. Additionally, the analysis identified a concurrent endothermic process alongside the anticipated exothermic phenomenon, potentially associated with the dissolution of anhydrous lactose. Since lactose is the only soluble excipient within the blend composition, the endothermic process can be attributed to the absorption of heat as lactose molecules dissolve in water. The findings from this study underscore the potential of utilising calorimetric methods to quantify the wettability of complex compounds and, ultimately, optimise tablet formulations
High shear granulation of binary mixtures: effect of powder composition on granule properties
The granular product being designed in this work required the use of two different powders namely limestone and teawaste; these materials have different bulk and particle densities. The overall aim of the project was to obtain a granular product in the size range of 2 to 4 mm. The two powders were granulated in different proportions using carboxymethylcellulose (CMC) as the binder. The effect of amount of binder added, relative composition of the powder, and type of teawaste on the product yield was studied. The results show that the optimum product yield was a function of both relative powder composition and the amount of binder used; increasing the composition of teawaste in the powder increased the amount of binder required for successful granulation. An increase in the mass fraction of teawaste in the powder mix must be accompanied by an increase in the amount of binder to maintain the desired product yield
Design, production and characterisation of granular adsorbent material for arsenic removal from contaminated wastewater
The objective of this research was to design granulated iron oxide for the adsorption of heavy metals from wastewater. Polyvinyl acetate (PVAc) was chosen as a suitable binder; as it is water insoluble. Initial experiments on selection of suitable solvent of the polymer were carried out using three solvents namely; methanol, acetone and toluene. Based on the initial tests on product yield and mechanical strength, acetone was selected as the solvent for the polyvinyl acetate binder. Design of experiment was then used to investigate the influence of granulation process variables; impeller speed, binder concentration and liquid to solid ratio on the properties of the granular materials. The response variables in the study were granules mean size, stability in water and granule strength. The results showed that the combination of high impeller speed and high binder concentration favour the formation of strong and stable granules. Results also showed that leaching of the binder into the simulated was water was negligible. Trial adsorption experiments carried out using the strongest and most stable iron oxide granules produced in this work showed removal efficiency of around 70% of synthetic arsenic solutions with initial concentration of 1000 pp