9 research outputs found

    Thermocapillary Convection Near an Evaporating Meniscus

    Get PDF

    Thin-Film Evaporation in an Evaporating Droplet

    Get PDF

    Microscale Temperature Measurements near the Contact Line of an Evaporating Thin Film in a V-Groove

    No full text
    Thin-film evaporation of heptane in a V-groove geometry is experimentally investigated. The groove is made of fused quartz, and electrical heating of a thin layer of titanium coated on the backside of the quartz substrate provides a constant heat flux. The effects of liquid feeding rate on the temperature suppression in the thin-film region and on the meniscus shape are explored. High resolution (∼6.3 μm) infrared thermography is employed to investigate the temperature profile in the thin-film region, while a goniometer is used to image the meniscus shape. An approximate heat balance analysis is used to estimate the fraction of total meniscus heat transfer which takes place in the contact line region

    Experimental investigation of steady buoyant-thermocapillaryconvection near an evaporating meniscus

    Get PDF
    Micro-particle image velocimetry measurements of the 3D (three-dimensional) convection patterns generated near an evaporating meniscus in horizontally oriented capillary tubes are presented. Analysis of the vapor diffusion away from the meniscus reveals a zone of intense heat flux near the solid-liquid-vapor junction which creates a temperature gradient along the meniscus. This results in a surface tension gradient which, coupled with buoyancy effects, causes buoyant-thermocapillary convection in the liquid film. The relative influence of buoyancy and thermocapillarity on the flow was investigated for tube diameters ranging from 75 to 1575 µm. A transition from a pure 2D thermocapillary flow to a 3D buoyant-thermocapillary flow is observed with an increase in tube diameter. For the 75 µm tube, a symmetrical toroidal vortex is observed near the meniscus. For larger tubes, buoyancy effects become apparent as they dominate the flow field. The high mass fluxes in smaller-diameter tubes drive stronger vortices. Particle streaks and µPIV images obtained in multiple horizontal and vertical planes provide an understanding of this three-dimensional flow behavior. A scaling analysis shows the importance of thermocapillary convection in evaporating menisci

    Experimental Investigation of Evaporation from Low-Contact-Angle Sessile Droplets

    No full text
    Evaporating sessile drops remain pinned at the contact line during much of the evaporation process, and leave a ring of residue oil the surface upon dryout. The intensive mass loss near the contact line causes Solute particles to now to the edge of the droplet and deposit at the contact line. The high vapor diffusion gradient and the low thermal resistance of the film near the contact line are responsible for very efficient mass transfer in this region. Although heat and mass transfer at the contact line have been extensively studied, well-characterized experiments remain scarce. The local mass transport in a 100-400 mu m region near the contact line of a water droplet of radius 1810 mu m on a glass substrate is experimentally quantified in the present work. Microparticle image velocimetry measurements of the three-dimensional now field near the contact line are conducted to map the velocity field. Combined with high-resolution transient liquid profile shapes, the measured velocity field yields transient local evaporative mass fluxes near the contact line. The spatial and temporal distribution of the local evaporative flux is also documented. The temperature distribution in the droplet near the contact line is deduced from the local evaporative fluxes and interface mass transport theory
    corecore