134 research outputs found

    Structural studies on enzymes of biotechnological and biomedical interest

    Get PDF
    Structural studies of proteins aim at elucidating the atomic details of molecular interactions in biological processes of living organisms. These studies are particularly important in understanding structure, function and evolution of proteins and in defining their roles in complex biological settings. Furthermore, structural studies can be used for the development of novel properties in biomolecules of environmental, industrial and medical importance. X-ray crystallography is an invaluable tool to obtain accurate and precise information about the structure of proteins at the atomic level. Glutathione transferases (GSTs) are amongst the most versatile enzymes in nature. They are able to catalyze a wide variety of conjugation reactions between glutathione (GSH) and non-polar components containing an electrophilic carbon, nitrogen or sulphur atom. Plant GSTs from the Tau class (a poorly characterized class) play an important role in the detoxification of xenobiotics and stress tolerance. Structural studies were performed on a Tau class fluorodifen-inducible glutathione transferase from Glycine max (GmGSTU4-4) complexed with GSH (2.7 Å) and a product analogue Nb-GSH (1.7 Å). The three-dimensional structure of the GmGSTU4-4-GSH complex revealed that GSH binds in different conformations in the two subunits of the dimer: in an ionized form in one subunit and a non-ionized form in the second subunit. Only the ionized form of the substrate may lead to the formation of a catalytically competent complex. Structural comparison between the GSH and Nb-GSH bound complexes revealed significant differences with respect to the hydrogen-bonding, electrostatic interaction pattern, the upper part of -helix H4 and the C-terminus of the enzyme. These differences indicate an intrasubunit modulation between the G-and Hsites suggesting an induced-fit mechanism of xenobiotic substrate binding. A novel binding site on the surface of the enzyme was also revealed. Bacterial type-II L-asparaginases are used in the treatment of haematopoietic diseases such as acute lymphoblastic leukaemia (ALL) and lymphomas due to their ability to catalyze the conversion of L-asparagine to L-aspartate and ammonia. Escherichia coli and Erwinia chrysanthemi asparaginases are employed for the treatment of ALL for over 30 years. However, serious side-effects affecting the liver and pancreas have been observed due to the intrinsic glutaminase activity of the administered enzymes. Structural studies on Helicobacter pylori L-asparaginase (HpA) were carried out in an effort to discover novel L-asparaginases with potential chemotherapeutic utility in ALL treatment. Detailed analysis of the active site geometry revealed structurally significant differences between HpA and other Lasparaginases that may be important for the biological activities of the enzyme and could be further exploited in protein engineering efforts.Siirretty Doriast

    Measuring Environmental Efficiency of Industry: A Case Study of Thermal Power Generation in India

    Get PDF
    Technical and environmental efficiency of some coal-fired thermal power plants in India is estimated using a methodology that accounts for firm’s efforts to increase the production of good output and reduce pollution with the given resources and technology. The methodology used is directional output distance function. Estimates of firm-specific shadow prices of pollutants (bad outputs), and elasticity of substitution between good and bad outputs are also obtained. The technical and environmental inefficiency of a representative firm is estimated as 0.10 implying that the thermal power generating industry in Andhra Pradesh state of India could increase production of electricity by 10 per cent while decreasing generation of pollution by 10 percent. This result shows that there are incentives or win-win opportunities for the firms to voluntarily comply with the environmental regulation. It is found that there is a significant variation in marginal cost of pollution abatement or shadow prices of bad outputs across the firms and an increasing marginal cost of pollution abatement with respect to pollution reduction by the firms. The variation in marginal cost of pollution abatement and compliance to regulation across firms could be reduced by having economic instruments like emission tax.environmental and technical efficiency; shadow prices of bad outputs; air pollution

    Using big data for decisions in agricultural supply chain

    Get PDF
    Thesis (M. Eng. in Logistics)--Massachusetts Institute of Technology, Engineering Systems Division, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 53-54).Agriculture is an industry where historical and current data abound. This paper investigates the numerous data sources available in the agricultural field and analyzes them for usage in supply chain improvement. We identified certain applicable data and investigated methods of using this data to make better supply chain decisions within the agricultural chemical distribution chain. We identified a specific product, AgChem, for this study. AgChem, like many agricultural chemicals, is forecasted and produced months in advance of a very short sales window. With improved demand forecasting based on abundantly-available data, Dow AgroSciences, the manufacturer of AgChem, can make better production and distribution decisions. We analyzed various data to identify factors that influence AgChem sales. Many of these factors relate to corn production since AgChem is generally used with corn crops. Using regression models, we identified leading indicators that assist to forecast future demand of the product. We developed three regressions models to forecast demand on various horizons. The first model identified that the price of corn and price of fertilizer affect the annual, nation-wide demand for the product. The second model explains expected geographic distribution of this annual demand. It shows that the number of retailers in an area is correlated to the total annual demand in that area. The model also quantifies the relationship between the sales in the first few weeks of the season, and the total sales for the season. And the third model serves as a short-term, demand-sensing tool to predict the timing of the demand within certain geographies. We found that weather conditions and the timing of harvest affect when AgChem sales occur. With these models, Dow AgroSciences has a better understanding of how external factors influence the sale of AgChem. With this new understanding, they can make better decisions about the distribution of the product and position inventory in a timely manner at the source of demand.by Derik Lafayette Smith and Satya Prakash Dhavala.M.Eng.in Logistic
    • 

    corecore