9 research outputs found

    Development of Novel Blackgram (Vigna mungo (L.) Hepper) Mutants and Deciphering Genotype × Environment Interaction for Yield-Related Traits of Mutants

    No full text
    Blackgram (Vigna mungo (L.) Hepper) yields are noticeably poor due to a shortage of improved varieties and an aggravated narrow genetic base. An attempt was made to isolate novel blackgram mutants by selecting for yield-related traits derived through gamma irradiation and testing the mutant genotype’s stability across the different environments. The irradiated blackgram populations M1-M5 were established in the background of cultivars ADT 3, Co 6, and TU 17-9. Desirable mutants were selected from M3 to M5 generations. It was observed in M2 and M3 that gamma rays showed higher mutagenic efficacy and generated good inherited variance for the yield-related traits. M4 established three divergent groups in each blackgram cultivar revealed by clustering analysis. The number of pods per plant, number of clusters per plant, and number of pods per cluster showed a strong direct association with single plant yield and could be considered as selection traits. G × E interactions were higher than the variation due to genotype for single plant yield. Limited environmental interaction was observed for the genotypes G24, G16, G36, G30, and G17, as revealed by AMMI, and the genotypes G18 and G29, as revealed by GGE. GGE biplot revealed the environment-specific genotypes G13 for E1 (Aduthurai), G7 for E2 (Kattuthottam), and G34 for E3 (Vamban) and also portrayed the highly discriminating (E3) and representative (E2) environments. Selected novel blackgram genotypes from this research are useful genetic stocks for genetic improvement and breeding

    Dynamic transcriptome profiling of mungbean genotypes unveil the genes respond to the infection of mungbean yellow mosaic virus

    No full text
    Yellow mosaic disease (YMD), incited by mungbean yellow mosaic virus (MYMV), is a primary viral disease that reduces mungbean production in South Asia, especially in India. There is no detailed knowledge regarding the genes and molecular mechanisms conferring resistance of mungbean to MYMV. Therefore, disclosing the genetic and molecular bases related to MYMV resistance helps to develop the mungbean genotypes with MYMV resistance. In this study, transcriptomes of mungbean genotypes, VGGRU-1 (resistant) and VRM (Gg) 1 (susceptible) infected with MYMV were compared to those of uninfected controls. The number of differentially expressed genes (DEGs) in the resistant and susceptible genotypes was 896 and 506, respectively. Among them, 275 DEGs were common between the resistant and susceptible genotypes. Functional annotation of DEGs revealed that the DEGs belonged to the following categories defense and pathogenesis, receptor-like kinases; serine/threonine protein kinases, hormone signaling, transcription factors, and chaperons, and secondary metabolites. Further, we have confirmed the expression pattern of several DEGs by quantitative real-time PCR (qRT-PCR) analysis. Collectively, the information obtained in this study unveils the new insights into characterizing the MYMV resistance and paved the way for breeding MYMV resistant mungbean in the future

    Distinctive Physio-Biochemical Properties and Transcriptional Changes Unfold the Mungbean Cultivars Differing by Their Response to Drought Stress at Flowering Stage

    No full text
    Mungbean is a nutritionally and economically important pulse crop cultivated around Asia, mainly in India. The crop is sensitive to drought at various developmental stages of its growing period. However, there is limited or almost no research on a comparative evaluation of mung-bean plants at the flowering stage under drought conditions. Hence, the aim of this research was to impose the drought stress on two mungbean cultivars VRM (Gg) 1 and CO6 at the flowering stage and assess the physio-biochemical and transcriptional changes. After imposing the drought stress, we found that VRM (Gg) 1 exhibited a low reduction in physiological traits (Chlorophyll, relative water content, and plant dry mass) and high proline content than CO6. Additionally, VRM (Gg) 1 has a low level of H2O2 and MDA contents and higher antioxidant enzymes (SOD, POD, and CAT) activity than CO6 during drought stress. The transcriptional analysis of photosynthesis (PS II-PsbP, PS II-LHC, PS I-PsaG/PsaK, and PEPC 3), antioxidant (SOD 2, POD, CAT 2), and drought-responsive genes (HSP-90, DREB2C, NAC 3 and AREB 2) show that VRM (Gg) 1 had increased transcripts more than CO6 under drought stress. Taken together, VRM (Gg) 1 had a better photosynthetic performance which resulted in fewer reductions in chlorophyll, relative water content, and plant dry mass during drought stress. In addition, higher antioxidative enzyme activities led to lower H2O2 and MDA levels, limiting oxidative damage in VRM (Gg) 1. This was positively correlated with increased transcripts of photosynthesis and antioxidant-related genes in VRM (Gg) 1. Further, the increased transcripts of drought-responsive genes indicate that VRM (Gg) 1 has a better genetic basis against drought stress than CO6. These findings help to understand the mungbean response to drought stress and will aid in the development of genotypes with greater drought tolerance by utilizing natural genetic variants

    Incorporation of opaque-2 into ‘UMI 1200’, an elite maize inbred line, through marker-assisted backcross breeding

    No full text
    Maize is an important agricultural plant valued for its productivity and nutritive qualities. However, a deficiency of two essential amino acids (lysine and tryptophan) significantly reduces the nutritional quality of maize proteins. The recessive opaque-2 (o2) mutant has a greater content of lysine and tryptophan in their endosperm proteins and their bioavailability is better. Therefore, marker-assisted backcross breeding (MABB) was attempted to incorporate the o2 allele from the donor line VQL 1 into the genetic background of UMI 1200 to develop quality protein maize (QPM) lines. Foreground selection for the gene o2 was effected using tightly linked molecular marker umc1066, in UMI 1200 × VQL 1 backcross series. Further, background selection was done together with stringent phenotypic selection for agronomic traits, to accelerate recurrent parent phenome recovery. As a result, three advanced QPM maize lines (DBT 4-1-1/25-10/25-10/25-16, DBT 4-1-1/25-10/25-17/25-11 and DBT 4-1-1/25-10/25-17/25-13) carrying the opaque-2 allele in a homozygous state, similar to VQL 1 were developed. The lysine and tryptophan content of these lines ranged from 0.35% to 0.40% and 0.03 to 0.05%, respectively, which is on par with the VQL 1. Background analysis using 250 simple sequence repeats (SSRs) revealed up to 97% recurrent parent genome recovery. In conclusion, the newly developed QPM lines can be used in future maize breeding programmes to improve the nutritional traits
    corecore