8 research outputs found

    Adaptive Steering and Trajectory Control of Wheeled Mobile Robots for Autonomous Navigation

    Get PDF
    This chapter presents a new reactive navigation algorithm for a wheeled mobile robot (WMR) with a differential drive mechanism moving in unknown environments [1]. The mobile robot is controlled to travel to a predefined goal position safely and efficiently without any prior map of the environment. The navigation is achieved by modulating the steering angle and turning radius. To avoid obstacles while seeking the goal position, the dimensions and shape of the robot are incorporated to determine the set of all possible collision-free steering angles. The algorithm then selects the optimum steering angle candidate to contour the obstacle. Simulation and experimental results on a WMR prototype are used to validate the proposed algorithms

    Synergetic Control of a Hybrid Battery-Ultracapacitor Energy Storage System

    Get PDF
    This chapter presents a synergy-based cascade control scheme for a hybrid battery-ultracapacitor (UC) energy storage system. The purpose is to improve the dynamic response of the battery-based energy storage system using an ultracapacitor module as an auxiliary energy storage unit. A bidirectional DC-DC converter is designed to interface between the ultracapacitor module and the main DC-bus. The control scheme is based on a fast inner current control loop using sliding mode control and an outer loop for DC-bus voltage regulation using synergy-based control. The improvement in performance is demonstrated through simulation and experiments. The results show that the DC-bus voltage is well regulated under external load disturbances with fast dynamic transients. The ultracapacitor module is able to absorb the sudden load variations and limit the battery power requirements by maintaining an optimal power balance between the two embedded storage units. The performance of the proposed synergy-based controller is compared with the standard PI controller, and its ability to achieve optimal transient performance is verified

    Dynamic Analysis and Optimized Design of Synergetic Control for a PMSM Drive System

    Get PDF
    This chapter presents an optimum design of synergetic control for a permanent magnet synchronous motor (PMSM) drive system. New macro-variables are proposed to improve the performance of the standard controller. The controller’s performance is compared with that of the field-oriented control scheme. The chapter also investigates the regenerative braking mode of operation in PMSM. Regenerative braking is achieved by operating the motor in torque control mode. The different algorithms are validated through experiments using a 1-hp PMSM drive system. We also provide an extensive study of the controller parameters tuning for optimal performance. The experimental results show that the proposed macro-variables improve the performance of the synergetic controller significantly. The synergetic controller is able to overcome nonlinearities in the system, such as static friction, faster than the field-oriented controller. The system also experiences fewer harmonics under the synergetic controller. The synergetic controller shows also better performance under wide signal variations. As for regenerative braking, the torque control mode of operation is shown to be suitable for harvesting energy and both techniques showed similar performance levels. The proposed synergetic control strategy will be very useful in electric vehicle (EV) applications, as it allows to improve the dynamic response and efficiency of the drive system required by the EV dynamics

    High Precision Sinusoidal Position Tracking of a Voice-Coil Linear Servomotor Using Resonant Control

    No full text
    This paper presents a new sinusoidal position-tracking control scheme with a resonant controller for linear motor drive systems. The sinusoidal tracking controller is designed without any added algorithm for system identification and requires only approximate values of the mechanical parameters. Therefore, the controller is simple and robust to parameter variations. The proposed sinusoidal tracking resonant-based controller (STRC) is designed to track reference positions using a cascade control structure with an inner current/force control with hysteresis current control followed by a speed control loop with a resonant controller, and an outer position loop with a proportional and velocity-feedforward controller. The stability of the cascade feedback scheme and its parameter tuning are analyzed using the Routh–Hurwitz criterion. The performance of the proposed control scheme is validated using simulations and experiments on a voice-coil linear stage. The proposed STRC strategy is characterized by ease of implementation and shows excellent performance with fast response and high accuracy at different frequencies with a maximum error of 0.58% at 0.25 Hz

    MODELING AND ANALYSIS OF HYSTERESIS IN HARMONIC DRIVE GEARS

    No full text
    In this article, a mathematical model and its parameter identification scheme are proposed for harmonic drive gears with compliance and hysteresis. The hysteresis phenomenon in harmonic drives is described by a nonlinear differential equation representing the torque–displacement relationship across the flexpline of the harmonic drive. The representation is equivalent to having the combination of nonlinear stiffness and nonlinear viscous damping. Numerical simulations along with experimental data have been used to validate the proposed modeling concept
    corecore