21 research outputs found
Perfluorocarbons therapeutics in modern cancer nanotechnology for hypoxia-induced anti-tumor therapy
Fruit extract mediated green synthesis of metallic nanoparticles: a new avenue in pomology applications
Fruit extracts have natural bioactive molecules that are known to possess significant therapeutic potential. Traditionally, metallic nanoparticles were synthesized via chemical methods, in which the chemical act as the reducing agent. Later, these traditional metallic nanoparticles emerged as the biological risk, which prompted researchers to explore an eco-friendly approach. There are different eco-friendly methods employed for synthesizing these metallic nanoparticles via the usage of microbes and plants, primarily via fruit extract. These explorations have paved the way for using fruit extracts for developing nanoparticles, as they eliminate the usage of reducing and stabilizing agents. Metallic nanoparticles have gained significant attention, and are used for diverse biological applications. The present review discusses the potential activities of phytochemicals, and it intends to summarize the different metallic nanoparticles synthesized using fruit extracts and their associated pharmacological activities like anti-cancerous, antimicrobial, antioxidant and catalytic efficienc
Impact of Phytoconstituents on Oral Health Practices: A Post COVID-19 Observation
Appropriate oral hygiene significantly reduces the possibility of oral infections. However, dental caries and periodontal diseases are major oral health issues causing chronic diseases due to poor oral health. Recently, herbal compounds have gained interest in maintaining oral health. Extracts of burdock root (Arctium), noni fruit (Morinda citrifolia), and neem leaf (Azadirachta indica) are now used as intracanal medicaments in endodontics and periodontics. Plectranthus amboinicus species and other plants produces essential oil like β-caryophyllene, p-cymene, and γ-terpinenecan exhibiting antibacterial activity, highlighting phytoconstituents plays a vital role in oral health. The COVID-19 pandemic highlighted the importance of hygiene and sanitization, to curb SARS-CoV-2. Oral cavity is among the gateways for virus entry into saliva. Saliva is a potential reservoir of SARS-CoV-2, and there is an increased risk of infection if there is any fissure in the mouth. This enables entry of virus into the vascular system through gingival or periodontal pocket, possibly reaching lung periphery then to lung vessels by interacting with endothelial surface receptors triggering pulmonary vasoconstriction and lung damage due to endothelial dysfunction. This review aims to draw attention to the possible route of SARS-CoV-2 infection via the oral cavity and the importance of oral hygiene against COVID-19
Plant prebiotics and their role in the amelioration of diseases
Prebiotics are either natural or synthetic non-digestible (non-)carbohydrate substances that boost the proliferation of gut microbes. Undigested fructooligosaccharides in the large intestine are utilised by the beneficial microorganisms for the synthesis of short-chain fatty acids for their own growth. Although various food products are now recognized as having prebiotic properties, several others, such as almonds, artichoke, barley, chia seeds, chicory, dandelion greens, flaxseeds, garlic, and oats, are being explored and used as functional foods. Considering the benefits of these prebiotics in mineral absorption, metabolite production, gut microbiota modulation, and in various diseases such as diabetes, allergy, metabolic disorders, and necrotising enterocolitis, increasing attention has been focused on their applications in both food and pharmaceutical industries, although some of these food products are actually used as food supplements. This review aims to highlight the potential and need of these prebiotics in the diet and also discusses data related to the distinct types, sources, modes of action, and health benefits
Detection of bacterial pathogens and antibiotic residues in chicken meat: a review
Detection of pathogenic microbes as well as antibiotic residues in food animals, especially in chicken, has become a matter of food security worldwide. The association of various pathogenic bacteria in different diseases and selective pressure induced by accumulated antibiotic residue to develop antibiotic resistance is also emerging as the threat to human health. These challenges have made the containment of pathogenic bacteria and early detection of antibiotic residue highly crucial for robust and precise detection. However, the traditional culture-based approaches are well-comprehended for identifying microbes. Nevertheless, because they are inadequate, time-consuming and laborious, these conventional methods are not predominantly used. Therefore, it has become essential to explore alternatives for the easy and robust detection of pathogenic microbes and antibiotic residue in the food source. Presently, different monitoring, as well as detection techniques like PCR-based, assay (nucleic acid)-based, enzyme-linked immunosorbent assays (ELISA)-based, aptamer-based, biosensor-based, matrix-assisted laser desorption/ionization-time of flight mass spectrometry-based and electronic nose-based methods, have been developed for detecting the presence of bacterial contaminants and antibiotic residues. The current review intends to summarize the different techniques and underline the potential of every method used for the detection of bacterial pathogens and antibiotic residue in chicken meat
Understanding of colistin usage in food animals and available detection techniques: a review
Progress in the medical profession is determined by the achievements and effectiveness of new antibiotics in the treatment of microbial infections. However, the development of multiple-drug resistance in numerous bacteria, especially Gram-negative bacteria, has limited the treatment options. Due to this resistance, the resurgence of cyclic polypeptide drugs like colistin remains the only option. The drug, colistin, is a well-known growth inhibitor of Gram-negative bacteria like Acinetobacter baumanni, Enterobacter cloacae, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Technological advancements have uncovered the role of the mcr-1(mobilized colistin resistance) gene, which is responsible for the development of resistance in Gram-negative bacteria, which make them distinct from other bacteria without this gene. Additionally, food animals have been determined to be the reservoir for colistin resistance microbes, from which they spread to other hosts. Due to the adverse effects of colistin, many developed countries have prohibited its usage in animal foods, but developing countries are still using colistin in animal food production, thereby imposing a major risk to the public health. Therefore, there is a need for implementation of sustainable measures in livestock farms to prevent microbial infection. This review highlights the negative effects (increased resistance) of colistin consumption and emphasizes the different approaches used for detecting colistin in animal-based foods as well as the challenges associated with its detectio
Hypoxia-inducible factor (HIF): fuel for cancer progression
Hypoxia is an integral part of the tumor microenvironment, caused primarily due to rapidly multiplying tumor cells and a lack of proper blood supply. Among the major hypoxic pathways, HIF-1 transcription factor activation is one of the widely investigated pathways in the hypoxic tumor microenvironment (TME). HIF-1 is known to activate several adaptive reactions in response to oxygen deficiency in tumor cells. HIF-1 has two subunits, HIF-1β (constitutive) and HIF-1α (inducible). The HIF-1α expression is largely regulated via various cytokines (through PI3K-ACT-mTOR signals), which involves the cascading of several growth factors and oncogenic cascades. These events lead to the loss of cellular tumor suppressant activity through changes in the level of oxygen via oxygen-dependent and oxygenindependent pathways. The significant and crucial role of HIF in cancer progression and its underlying mechanisms have gained much attention lately among the translational researchers in the fields of cancer and biological sciences, which have enabled them to correlate these mechanisms with various other disease modalities. In the present review, we have summarized the key findings related to the role of HIF in the progression of tumors
Cellular signalling pathways mediating the pathogenesis of chronic inflammatory respiratory diseases: an update
Respiratory disorders, especially non-communicable, chronic inflammatory diseases, are amongst the leading causes of mortality and morbidity worldwide. Respiratory diseases involve multiple pulmonary components, including airways and lungs that lead to their abnormal physiological functioning. Several signaling pathways have been reported to play an important role in the pathophysiology of respiratory diseases. These pathways, in addition, become the compounding factors contributing to the clinical outcomes in respiratory diseases. A range of signaling components such as Notch, Hedgehog, Wingless/Wnt, bone morphogenetic proteins, epidermal growth factor and fibroblast growth factor is primarily employed by these pathways in the eventual cascade of events. The different aberrations in such cell-signaling processes trigger the onset of respiratory diseases making the conventional therapeutic modalities ineffective. These challenges have prompted us to explore novel and effective approaches for the prevention and/or treatment of respiratory diseases. In this review, we have attempted to deliberate on the current literature describing the role of major cell signaling pathways in the pathogenesis of pulmonary diseases and discuss promising advances in the field of therapeutics that could lead to novel clinical therapies capable of preventing or reversing pulmonary vascular pathology in such patients
Plant Fortification of the Diet for Anti-Ageing Effects: A Review
Ageing is an enigmatic and progressive biological process which undermines the normal functions of living organisms with time. Ageing has been conspicuously linked to dietary habits, whereby dietary restrictions and antioxidants play a substantial role in slowing the ageing process. Oxygen is an essential molecule that sustains human life on earth and is involved in the synthesis of reactive oxygen species (ROS) that pose certain health complications. The ROS are believed to be a significant factor in the progression of ageing. A robust lifestyle and healthy food, containing dietary antioxidants, are essential for improving the overall livelihood and decelerating the ageing process. Dietary antioxidants such as adaptogens, anthocyanins, vitamins A/D/C/E and isoflavones slow the ageing phenomena by reducing ROS production in the cells, thereby improving the life span of living organisms. This review highlights the manifestations of ageing, theories associated with ageing and the importance of diet management in ageing. It also discusses the available functional foods as well as nutraceuticals with anti-ageing potential
Biogenic nanoparticles: pioneering a new era in breast cancer therapeutics—a comprehensive review
Abstract Breast cancer, a widespread malignancy affecting women globally, often arises from mutations in estrogen/progesterone receptors. Conventional treatments like surgery, radiotherapy, and chemotherapy face limitations such as low efficacy and adverse effects. However, nanotechnology offers promise with its unique attributes like targeted delivery and controlled drug release. Yet, challenges like poor size distribution and environmental concerns exist. Biogenic nanotechnology, using natural materials or living cells, is gaining traction for its safety and efficacy in cancer treatment. Biogenic nanoparticles synthesized from plant extracts offer a sustainable and eco-friendly approach, demonstrating significant toxicity against breast cancer cells while sparing healthy ones. They surpass traditional drugs, providing benefits like biocompatibility and targeted delivery. Thus, this current review summarizes the available knowledge on breast cancer (its types, stages, histopathology, symptoms, etiology and epidemiology) with the importance of using biogenic nanomaterials as a new and improved therapy. The novelty of this work lies in its comprehensive examination of the challenges and strategies for advancing the industrial utilization of biogenic metal and metal oxide NPs. Additionally; it underscores the potential of plant-mediated synthesis of biogenic NPs as effective therapies for breast cancer, detailing their mechanisms of action, advantages, and areas for further research