29 research outputs found
Transcranial magnetic stimulation tracks subminute changes in cortical excitability during propofol anesthesia
Automated anesthesia systems that continuously monitor cortical excitability (CE) changes to govern drug infusion rates, are desirable. Paired-pulse transcranial magnetic stimulation (ppTMS), with electromyography (EMG), provides noninvasive CE measures. We tested whether, and with what temporal resolution, ppTMS-EMG detects dose-dependent CE in rats anesthetized with continuous intravenous propofol. Motor-evoked potentials (MEPs) were recorded every 20 seconds as either propofol bolus or change in infusion rate was applied. ppTMS-derived measures varied in direct proportion to propofol dose with subminute temporal resolution. We conclude that ppTMS-EMG enables real-time markers of target engagement by anesthetics that may be incorporated into an automated devic
Suppression of Motor Cortical Excitability in Anesthetized Rats by Low Frequency Repetitive Transcranial Magnetic Stimulation
Repetitive transcranial magnetic stimulation (rTMS) is a widely-used method for modulating cortical excitability in humans, by mechanisms thought to involve use-dependent synaptic plasticity. For example, when low frequency rTMS (LF rTMS) is applied over the motor cortex, in humans, it predictably leads to a suppression of the motor evoked potential (MEP), presumably reflecting long-term depression (LTD) – like mechanisms. Yet how closely such rTMS effects actually match LTD is unknown. We therefore sought to (1) reproduce cortico-spinal depression by LF rTMS in rats, (2) establish a reliable animal model for rTMS effects that may enable mechanistic studies, and (3) test whether LTD-like properties are evident in the rat LF rTMS setup. Lateralized MEPs were obtained from anesthetized Long-Evans rats. To test frequency-dependence of LF rTMS, rats underwent rTMS at one of three frequencies, 0.25, 0.5, or 1 Hz. We next tested the dependence of rTMS effects on N-methyl-D-aspartate glutamate receptor (NMDAR), by application of two NMDAR antagonists. We find that 1 Hz rTMS preferentially depresses unilateral MEP in rats, and that this LTD-like effect is blocked by NMDAR antagonists. These are the first electrophysiological data showing depression of cortical excitability following LF rTMS in rats, and the first to demonstrate dependence of this form of cortical plasticity on the NMDAR. We also note that our report is the first to show that the capacity for LTD-type cortical suppression by rTMS is present under barbiturate anesthesia, suggesting that future neuromodulatory rTMS applications under anesthesia may be considered
Recommended from our members
Microarray Noninvasive Neuronal Seizure Recordings from Intact Larval Zebrafish.
Zebrafish epilepsy models are emerging tools in experimental epilepsy. Zebrafish larvae, in particular, are advantageous because they can be easily genetically altered and used for developmental and drug studies since agents applied to the bath penetrate the organism easily. Methods for electrophysiological recordings in zebrafish are new and evolving. We present a novel multi-electrode array method to non-invasively record electrical activity from up to 61 locations of an intact larval zebrafish head. This method enables transcranial noninvasive recording of extracellular field potentials (which include multi-unit activity and EEG) to identify epileptic seizures. To record from the brains of zebrafish larvae, the dorsum of the head of an intact larva was secured onto a multi-electrode array. We recorded from individual electrodes for at least three hours and quantified neuronal firing frequency, spike patterns (continuous or bursting), and synchrony of neuronal firing. Following 15 mM potassium chloride- or pentylenetetrazole-infusion into the bath, spike and burst rate increased significantly. Additionally, synchrony of neuronal firing across channels, a hallmark of epileptic seizures, also increased. Notably, the fish survived the experiment. This non-invasive method complements present invasive zebrafish neurophysiological techniques: it affords the advantages of high spatial and temporal resolution, a capacity to measure multiregional activity and neuronal synchrony in seizures, and fish survival for future experiments, such as studies of epileptogenesis and development
Correction: Microarray Noninvasive Neuronal Seizure Recordings from Intact Larval Zebrafish.
[This corrects the article DOI: 10.1371/journal.pone.0156498.]
Safety of rTMS in patients with intracranial metallic objects
Non peer reviewe
Spike rate as a function of time.
<p>Spike rate is plotted as a function of time (bin size: 1s)–one channel per condition is shown. No significant change in burst or firing rate follows a sham convulsant application (<b>a</b>). Epileptic activity is detected as increased action potential firing rate and bursting after the addition of 15 mM KCl (<b>b</b>) or 15 mM PTZ (<b>c</b>). Spike rate increases with drug addition.</p