21 research outputs found

    On the Tractability of Neural Causal Inference

    Full text link
    Roth (1996) proved that any form of marginal inference with probabilistic graphical models (e.g. Bayesian Networks) will at least be NP-hard. Introduced and extensively investigated in the past decade, the neural probabilistic circuits known as sum-product network (SPN) offers linear time complexity. On another note, research around neural causal models (NCM) recently gained traction, demanding a tighter integration of causality for machine learning. To this end, we present a theoretical investigation of if, when, how and under what cost tractability occurs for different NCM. We prove that SPN-based causal inference is generally tractable, opposed to standard MLP-based NCM. We further introduce a new tractable NCM-class that is efficient in inference and fully expressive in terms of Pearl's Causal Hierarchy. Our comparative empirical illustration on simulations and standard benchmarks validates our theoretical proofs.Comment: Main paper: 8 pages, References: 2 pages, Appendix: 5 pages. Figures: 5 main, 2 appendi

    Causal Parrots: Large Language Models May Talk Causality But Are Not Causal

    Full text link
    Some argue scale is all what is needed to achieve AI, covering even causal models. We make it clear that large language models (LLMs) cannot be causal and give reason onto why sometimes we might feel otherwise. To this end, we define and exemplify a new subgroup of Structural Causal Model (SCM) that we call meta SCM which encode causal facts about other SCM within their variables. We conjecture that in the cases where LLM succeed in doing causal inference, underlying was a respective meta SCM that exposed correlations between causal facts in natural language on whose data the LLM was ultimately trained. If our hypothesis holds true, then this would imply that LLMs are like parrots in that they simply recite the causal knowledge embedded in the data. Our empirical analysis provides favoring evidence that current LLMs are even weak `causal parrots.'Comment: Published in Transactions in Machine Learning Research (TMLR) (08/2023). Main paper: 17 pages, References: 3 pages, Appendix: 7 pages. Figures: 5 main, 3 appendix. Tables: 3 mai

    Differentiable Meta logical Programming

    Full text link
    Deep learning uses an increasing amount of computation and data to solve very specific problems. By stark contrast, human minds solve a wide range of problems using a fixed amount of computation and limited experience. One ability that seems crucial to this kind of general intelligence is meta-reasoning, i.e., our ability to reason about reasoning. To make deep learning do more from less, we propose the differentiable logical meta interpreter (DLMI). The key idea is to realize a meta-interpreter using differentiable forward-chaining reasoning in first-order logic. This directly allows DLMI to reason and even learn about its own operations. This is different from performing object-level deep reasoning and learning, which refers in some way to entities external to the system. In contrast, DLMI is able to reflect or introspect, i.e., to shift from meta-reasoning to object-level reasoning and vice versa. Among many other experimental evaluations, we illustrate this behavior using the novel task of "repairing Kandinsky patterns," i.e., how to edit the objects in an image so that it agrees with a given logical concept

    Pearl Causal Hierarchy on Image Data: Intricacies & Challenges

    Full text link
    Many researchers have voiced their support towards Pearl's counterfactual theory of causation as a stepping stone for AI/ML research's ultimate goal of intelligent systems. As in any other growing subfield, patience seems to be a virtue since significant progress on integrating notions from both fields takes time, yet, major challenges such as the lack of ground truth benchmarks or a unified perspective on classical problems such as computer vision seem to hinder the momentum of the research movement. This present work exemplifies how the Pearl Causal Hierarchy (PCH) can be understood on image data by providing insights on several intricacies but also challenges that naturally arise when applying key concepts from Pearlian causality to the study of image data.Comment: Main paper: 9 pages, References: 2 pages. Main paper: 7 figure
    corecore