32 research outputs found

    Analysis of particle breakage during the preparation steps of co/al2o3 catalysts

    No full text
    International audienceFischer–Tropsch reaction is applied to produce ultra-clean fuels based on the synthesis gases. Supported cobalt catalysts are used for Fischer–Tropsch synthesis due to their high stability and good catalytic activity. These catalysts are generally prepared by wet chemical methods which involve impregnation, drying and calcination. A new approach to the analysis of degradation of catalysts under thermal stress during the various steps of catalyst preparation has been applied to the support (γ-Al2O3) and to the catalysts (10 wt% Co/Al2O3). Low particle damages occur when the catalyst is prepared by impregnation. Thus, a rate of about 1 wt% of fine particles with sizes less than 63 µm has been quantified. However, the effect of temperature during drying at 100 °C and calcination at 400 °C becomes significant: a degradation rate of 2% and 5% is noted for temperatures of 100 °C and 400 °C, respectively. These results show particle degradation through cleavage and fragmentation. These mechanisms result in the initial heterogeneous structure (fractures and cracks) of the support which reduces the mechanical resistance of the catalyst and initiates the rupture of the particles under an increase in temperature. To describe the particle breakage, a numerical approach was implemented under thermal stresses on modeled Co/Al2O3 ring particles. Calculations were performed using COMSOL Multiphysics® (Structural Mechanics Module) following a 2D geometry. The effect of temperature, crack height (radial and axial components) and porosity on the particle breakage were studied. The results obtained highlighted the solid breakage at high temperature (calcination phase), high-size cracks and low porosity

    Catalytic reactions under unsteady-state conditions. Modelling with COMSOL

    No full text
    Présentation : S. Pietrzsy

    Kinetic investigation of the NO reduction by H2 over noble metal based catalysts

    No full text
    21-24 sept. 2005 Présentation : F. Dhainau

    Kinetic study of the reduction of NO by H2 over supported palladium catalysts

    No full text
    24-25 mars 2005 Présentation : F. Dhainau

    Etude cinétique de la reaction NO+H2 sur des catalyseurs à base de métaux nobles supportés

    No full text
    30 mai – 2 juin 2005 Présentation : F. Dhainau

    Réduction des oxydes d'azote par l'hydrogène sur des catalyseurs à base de métaux nobles supportés

    No full text
    L'emploi de l'hydrogène s'avère intéressant d'un point de vue environnemental pour réduire les émissions des oxydes d'azote (NOx) provenant de sources fixes à basse température. Le but de cette thèse était l'étude cinétique et la modélisation de la réaction NO+H2 catalysée par les métaux nobles supportés. Il s'agissait de sélectionner un mécanisme réactionnel, d'établir une équation de vitesse et, à partir de la détermination des paramètres cinetiques et thermodynamiques caractérisant cette équation, de discuter des propriétés d'adsorption du palladium et du platine et de la réactivité des espèces adsorbées, en particulier celles conduisant à la formation d'azote, en fonction de la nature de support, du pré-traitement d'activation du catalyseur et de la composition du mélange réactionnel, en présence et en absence d'oxygène. Différentes approches à partir d'études en régimes transitoire et stationnaire, ont permis de proposer un mécanisme pour la réaction NO+H2 différent selon la nature du support. Lorsque Pt et Pd sont dispersés sur un matériau inerte, tel que l'alumine, seuls les métaux nobles catalysent la réaction. Dans ce cas, un mécanisme de type Langmuir-Hinshelwood convient pour décrire la réduction de NO par H2. En revanche, un mécanisme alternatif faisant intervenir de nouveaux sites catalytiques à l'interface métal/support doit être considéré dans le cas d'un support réductible, tel que la pérovskite LaCo03. En présence d'oxygène un effet inhibiteur et un changement de la nature de l'étape de dissociation de NO interviennent sur Pd/Al203. En revanche, Pd en interaction avec la pérovskite réduite se comporte différemment.LILLE1-BU (590092102) / SudocSudocFranceF
    corecore