56 research outputs found
Study of Mechanical Disturbances in Superconducting Magnets using Piezoelectric Sensors and Quench Antenna
Mechanical disturbances in superconducting magnets were studied by recording and characterising the signals induced in piezo-electric ceramic sensors (piezos) and accelerometers by spontaneous acoustic emission (AE) during magnet excitation. The localisation of AE sources as recorded by the piezos corresponds to the localisation obtained by another, indirect technique, the so-called Quench Antenna. Dominant acoustic wave velocities along the magnet were measured by using selected piezos as active actuators. A mechanical disturbance energy calibration is shown and a way to estimate the minimum energy needed for quenching is proposed. A statistical approach is given in order to estimate the most probable amplitude of AE
Experimental results on radiation-induced bulk damage effects in float-zone and epitaxial silicon detectors
A comparative study of the radiation hardness of silicon pad detectors, manufactured from Float-Zone and Epitaxial n-type monocrystals and irradiated with protons and neutrons up to a fluence of 3.5 1014 cm-2 is presented. The results are compared in terms of their reverse current, depletion voltage, and charge collection as a function of fluence during irradiation and as a function of time after irradiation
Study of charge collection and noise in non-irradiated and irradiated silicon detectors
The large collection and noise were studied in non-irradiated and irradiated silicon detectors as a function of temperature (T), shaping time (0) and fluence , up to about 1,2 x 10(14) protons per cm2 for minimum-ionizing electrons yielded by a 106 Ru source. The noise of irradiated detectors is found to be dominted for short shaping times (¾50ns) by a series noise compo- nent, while for longer shaping times (80ns) a parallel noise component (correlated with the reverse current) prevails. For non-irradiated detectors, where the reverse current is three orders of magnetude smaller compared with irradiated detectors, the series noises dominates over the whole range of shaping times investigated (20-150ns). A signal degradation is observed for irradiated detectors. However, the signal ca be distinguished from noise, even after a fluence of about 1.2 x10(14) protons per cm2, at a temperature of 6øC and with a shaping time tipical of rge LHC inter-bunch crossing time (20-30ns). The measurements of the signal as a function of voltage shows that irradiated detectors depleted at 50% of the full depletion voltage can still provide a measurable signal-to-noise ratio
Recommended from our members
Charge collection and charge pulse formation in highly irradiated silicon planar detectors
The interpretation of experimental data and predictions for future experiments for high-energy physics have been based on conventional methods like capacitance versus voltage (C-V) measurements. Experiments carried out on highly irradiated detectors show that the kinetics of the charge collection and the dependence of the charge pulse amplitude on the applied bias are deviated too far from those predicted by the conventional methods. The described results show that in highly irradiated detectors, at a bias lower than the real full depletion voltage (V{sub fd}), the kinetics of the charge collection (Q) contains a fast and a slow component. At V = V{sub fd}*, which is the full depletion voltage traditionally determined by the extrapolation of the fast comopnent amplitude of q versus bias to the maximum value or from the standard C-V measurements, the pulse has a slow component with significant amplitude. This slow component can only be eliminated by applying additional bias that amounts to the real full depletion voltage (V{sub fd}) or more. The above mentioned regularities are explained in this paper in terms of a model of an irradiated detector with multiple regions. This model allows one to use C-V, in a modified way, as well as TChT (transient charge technique) measurements to determine the V{sub fd} for highly irradiated detectors
Improved neutron radiation hardness for Si detectors: Application of low resistivity starting material and or manipulation of N-eff by selective filling of radiation-induced traps at low temperatures
Radiation-induced electrical changes in both space charge region (SCR) of Si detectors and bulk material (BM) have been studied for samples of diodes and resistors made on Si materials with different initial resistivities. The space charge sign inversion fluence (Phi(inv)) has been found to increase linearly with the initial doping concentration (the reciprocal of the resistivity), which gives improved radiation hardness to Si detectors fabricated from low resistivity material. The resistivity of the BM, on the other hand, has been observed to increase with the neutron fluence and approach a saturation value in the order of hundreds k Omega cm at high fluences, independent of the initial resistivity and material type. However, the fluence (Phi(s)), at which the resistivity saturation starts, increases with the initial doping concentrations and the value of Phi(s) is in the same order of that of Phi(inv) for all resistivity samples. Improved radiation hardness can also be achieved by the manipulation of the space charge concentration (N-eff) in SCR, by selective filling and/or freezing at cryogenic temperatures the charge state of radiation-induced traps, to values that will give a much smaller full depletion voltage. Models have been proposed to explain the experimental data
Improved neutron radiation hardness for Si detectors: Application of low resistivity starting material and or manipulation of N-eff by selective filling of radiation-induced traps at low temperatures
Radiation-induced electrical changes in both space charge region (SCR) of Si detectors and bulk material (BM) have been studied for samples of diodes and resistors made on Si materials with different initial resistivities. The space charge sign inversion fluence (Phi(inv)) has been found to increase linearly with the initial doping concentration (the reciprocal of the resistivity), which gives improved radiation hardness to Si detectors fabricated from low resistivity material. The resistivity of the BM, on the other hand, has been observed to increase with the neutron fluence and approach a saturation value in the order of hundreds k Omega cm at high fluences, independent of the initial resistivity and material type. However, the fluence (Phi(s)), at which the resistivity saturation starts, increases with the initial doping concentrations and the value of Phi(s) is in the same order of that of Phi(inv) for all resistivity samples. Improved radiation hardness can also be achieved by the manipulation of the space charge concentration (N-eff) in SCR, by selective filling and/or freezing at cryogenic temperatures the charge state of radiation-induced traps, to values that will give a much smaller full depletion voltage. Models have been proposed to explain the experimental data
- …