7 research outputs found

    Oral-3Dv2: 3D Oral Reconstruction from Panoramic X-Ray Imaging with Implicit Neural Representation

    Full text link
    3D reconstruction of medical imaging from 2D images has become an increasingly interesting topic with the development of deep learning models in recent years. Previous studies in 3D reconstruction from limited X-ray images mainly rely on learning from paired 2D and 3D images, where the reconstruction quality relies on the scale and variation of collected data. This has brought significant challenges in the collection of training data, as only a tiny fraction of patients take two types of radiation examinations in the same period. Although simulation from higher-dimension images could solve this problem, the variance between real and simulated data could bring great uncertainty at the same time. In oral reconstruction, the situation becomes more challenging as only a single panoramic X-ray image is available, where models need to infer the curved shape by prior individual knowledge. To overcome these limitations, we propose Oral-3Dv2 to solve this cross-dimension translation problem in dental healthcare by learning solely on projection information, i.e., the projection image and trajectory of the X-ray tube. Our model learns to represent the 3D oral structure in an implicit way by mapping 2D coordinates into density values of voxels in the 3D space. To improve efficiency and effectiveness, we utilize a multi-head model that predicts a bunch of voxel values in 3D space simultaneously from a 2D coordinate in the axial plane and the dynamic sampling strategy to refine details of the density distribution in the reconstruction result. Extensive experiments in simulated and real data show that our model significantly outperforms existing state-of-the-art models without learning from paired images or prior individual knowledge. To the best of our knowledge, this is the first work of a non-adversarial-learning-based model in 3D radiology reconstruction from a single panoramic X-ray image

    In-Line Acoustic Device Inspection of Leakage in Water Distribution Pipes Based on Wavelet and Neural Network

    No full text
    Traditionally permanent acoustic sensors leak detection techniques have been proven to be very effective in water distribution pipes. However, these methods need long distance deployment and proper position of sensors and cannot be implemented on underground pipelines. An inline-inspection acoustic device is developed which consists of acoustic sensors. The device will travel by the flow of water through the pipes which record all noise events and detect small leaks. However, it records all the noise events regarding background noises, but the time domain noisy acoustic signal cannot manifest complete features such as the leak flow rate which does not distinguish the leak signal and environmental disturbance. This paper presents an algorithm structure with the modularity of wavelet and neural network, which combines the capability of wavelet transform analyzing leakage signals and classification capability of artificial neural networks. This study validates that the time domain is not evident to the complete features regarding noisy leak signals and significance of selection of mother wavelet to extract the noise event features in water distribution pipes. The simulation consequences have shown that an appropriate mother wavelet has been selected and localized to extract the features of the signal with leak noise and background noise, and by neural network implementation, the method improves the classification performance of extracted features

    The Free-Swimming Device Leakage Detection in Plastic Water-filled Pipes through Tuning the Wavelet Transform to the Underwater Acoustic Signals

    No full text
    The conventional fixed acoustic sensors leak detection methods have been demonstrated to be very practical for locating leakages in water distribution pipelines. However, these methods demand proper installation of sensors, and therefore cannot be implemented on buried long water distribution pipelines for condition assessment, early leak detection, and the estimation of leak size effect. Due to these limitations, a free-swimming device is developed. The free-swimming device with the potential of high acoustic sensitivity is capable of detecting the small underwater leakages in the plastic water-filled pipes. Despite the fact that a number of factors influence the underwater acoustic signals, such as water flow noise. Therefore, the interpretation of the leakage and influence of leakage size is considerably challenging from the underwater measured signals. The new method is proposed for reliable leakage detection by tuning the wavelet transform to underwater water acoustic signals. In this method, firstly, Short-Time Fourier Transforms (STFT) of underwater acoustic signals over a relatively long time-interval is monitored to capture the leakage-signals signature. The captured signals efficiently lead in the selection of mother wavelet (tuned wavelet) for the excellent signal localization in the time-frequency domain. Finally, the acoustic signals are analyzed in the tuned wavelet transform to detect the events. In this paper, the practical application of the proposed method, the controlled experiments are designed, and acoustic signals are collected from an experimental setup by launching the free-swimming device. The measured acoustic signals are used to identify the leakage-signals signature from unwanted interfering signals (instantaneous pipe vibrations, water flow noise, pipe's natural frequencies, and background noise). The evaluation of results validated that the free-swimming device and the tuned wavelet transform together can efficiently lead to reliable underwater leakage detection, as well as the influence of the leakage size in plastic water-filled pipes

    Online Classification of Contaminants Based on Multi-Classification Support Vector Machine Using Conventional Water Quality Sensors

    No full text
    Water quality early warning system is mainly used to detect deliberate or accidental water pollution events in water distribution systems. Identifying the types of pollutants is necessary after detecting the presence of pollutants to provide warning information about pollutant characteristics and emergency solutions. Thus, a real-time contaminant classification methodology, which uses the multi-classification support vector machine (SVM), is proposed in this study to obtain the probability for contaminants belonging to a category. The SVM-based model selected samples with indistinct feature, which were mostly low-concentration samples as the support vectors, thereby reducing the influence of the concentration of contaminants in the building process of a pattern library. The new sample points were classified into corresponding regions after constructing the classification boundaries with the support vector. Experimental results show that the multi-classification SVM-based approach is less affected by the concentration of contaminants when establishing a pattern library compared with the cosine distance classification method. Moreover, the proposed approach avoids making a single decision when classification features are unclear in the initial phase of injecting contaminants

    Application of Least-Squares Support Vector Machines for Quantitative Evaluation of Known Contaminant in Water Distribution System Using Online Water Quality Parameters

    No full text
    In water-quality, early warning systems and qualitative detection of contaminants are always challenging. There are a number of parameters that need to be measured which are not entirely linearly related to pollutant concentrations. Besides the complex correlations between variable water parameters that need to be analyzed also impairs the accuracy of quantitative detection. In aspects of these problems, the application of least-squares support vector machines (LS-SVM) is used to evaluate the water contamination and various conventional water quality sensors quantitatively. The various contaminations may cause different correlative responses of sensors, and also the degree of response is related to the concentration of the injected contaminant. Therefore to enhance the reliability and accuracy of water contamination detection a new method is proposed. In this method, a new relative response parameter is introduced to calculate the differences between water quality parameters and their baselines. A variety of regression models has been examined, as result of its high performance, the regression model based on genetic algorithm (GA) is combined with LS-SVM. In this paper, the practical application of the proposed method is considered, controlled experiments are designed, and data is collected from the experimental setup. The measured data is applied to analyze the water contamination concentration. The evaluation of results validated that the LS-SVM model can adapt to the local nonlinear variations between water quality parameters and contamination concentration with the excellent generalization ability and accuracy. The validity of the proposed approach in concentration evaluation for potassium ferricyanide is proven to be more than 0.5 mg/L in water distribution systems
    corecore