218 research outputs found

    Robust Component-based Network Localization with Noisy Range Measurements

    Full text link
    Accurate and robust localization is crucial for wireless ad-hoc and sensor networks. Among the localization techniques, component-based methods advance themselves for conquering network sparseness and anchor sparseness. But component-based methods are sensitive to ranging noises, which may cause a huge accumulated error either in component realization or merging process. This paper presents three results for robust component-based localization under ranging noises. (1) For a rigid graph component, a novel method is proposed to evaluate the graph's possible number of flip ambiguities under noises. In particular, graph's \emph{MInimal sepaRators that are neaRly cOllineaR (MIRROR)} is presented as the cause of flip ambiguity, and the number of MIRRORs indicates the possible number of flip ambiguities under noise. (2) Then the sensitivity of a graph's local deforming regarding ranging noises is investigated by perturbation analysis. A novel Ranging Sensitivity Matrix (RSM) is proposed to estimate the node location perturbations due to ranging noises. (3) By evaluating component robustness via the flipping and the local deforming risks, a Robust Component Generation and Realization (RCGR) algorithm is developed, which generates components based on the robustness metrics. RCGR was evaluated by simulations, which showed much better noise resistance and locating accuracy improvements than state-of-the-art of component-based localization algorithms.Comment: 9 pages, 15 figures, ICCCN 2018, Hangzhou, Chin

    Test method about transient characteristics of Relay protection calibration apparatus

    Get PDF
    AbstractRelay protection calibration apparatus is used to detect whether the Relay protection instrument satisfy their performance index. This article introduces the high-speed data acquisition system based on ADS930, proposes the interpolation algorithm aims to improve test accuracy in signal processing. It describes the method of filter smoothing to remove interference. Results illustrate the technique is correct and practical

    The effect of mucA allele on biofilm architecture and the biofilm-related proteomes

    Get PDF
    In this study, a unique mucA mutation (designated mucA56) was introduced, which was characterized by deletion of bases 166-333, encoding MucA56 protein with the deletion of the trans-membrane region, which then was proved to be cytoplasmic with phoA-mucA fusion method. PAOmucA56 was constructed with homologous recombination; two PAO1 derivatives PAOmucA22 (PDO300) and PAOmucA56 displayed mucoid phenotype on pseudomonas isolation agar (PIA) agar, but PDO300 produced more alginate than PAOmucA56. Scanning confocal laser microscopy was used to observe the biofilm structures of the three strains during various biofilm development stages. PDO300 developed biofilm with low substratum coverage and high structural heterogeneity, while PAOmucA56 and PAO1 formed uniform biofilm with complete substratum coverage. The proteomes of crude protein extracts of biofilm cells revealed that there are 17 candidate proteins differentially expressed between the two kinds of biofilm, which were proteins involved in protein synthesis, MucA degradation, energy metabolism, carbon catabolism and amino acid metabolism and so on. We might conclude that alginate production may affect biofilm architecture, and proteins involved in protein synthesis, MucA degradation, energy metabolism, carbon catabolism and amino acid metabolism might play a role in biofilm development alternatively

    Numerical investigation of the energy performance of a guideless irregular heat and mass exchanger with corrugated heat transfer surface for dew point cooling

    Get PDF
    © 2016 The Author(s) The paper presents an investigation into the energy performance of a novel irregular heat and mass exchanger for dew point cooling which, compared to the existing flat-plate heat exchangers, removed the use of the channel supporting guides and implemented the corrugated heat transfer surface, thus expecting to achieve the reduced air flow resistance, increased heat transfer area, and improved energy efficiency (i.e. Coefficient of Performance (COP)) of the air cooling process. CFD simulation was carried out to determine the flow resistance (K) factors of various elements within the dry and wet channels of the exchanger, while the ‘finite-element’ based ‘Newton-iteration’ numerical simulation was undertaken to investigate its cooling capacity, cooling effectiveness and COP at various geometrical and operational conditions. Compared to the existing flat-plate heat and mass exchangers with the same geometrical dimensions and operational conditions, the new irregular exchanger could achieve 32.9%–37% higher cooling capacity, dew-point and wet-bulb effectiveness, 29.7%–33.3% higher COP, and 55.8%–56.2% lower pressure drop. While undertaking dew point air cooling, the irregular heat and mass exchanger had the optimum air velocity of 1 m/s within the flow channels and working-to-intake air ratio of 0.3, which allowed the highest cooling capacity and COP to be achieved. In terms of the exchanger dimensions, the optimum height of the channel was 5 mm while its length was in the range 1–2 m. Overall, the proposed irregular heat and mass exchanger could lead to significant enhanced energy performance compared to the existing flat-plate dew point cooling heat exchanger of the same geometrical dimensions. To achieve the same amount cooling output, the irregular heat and mass exchanger had the reduced size and cost against the flat-plate ones

    Adaptive Graphical Model Network for 2D Handpose Estimation

    Full text link
    In this paper, we propose a new architecture called Adaptive Graphical Model Network (AGMN) to tackle the task of 2D hand pose estimation from a monocular RGB image. The AGMN consists of two branches of deep convolutional neural networks for calculating unary and pairwise potential functions, followed by a graphical model inference module for integrating unary and pairwise potentials. Unlike existing architectures proposed to combine DCNNs with graphical models, our AGMN is novel in that the parameters of its graphical model are conditioned on and fully adaptive to individual input images. Experiments show that our approach outperforms the state-of-the-art method used in 2D hand keypoints estimation by a notable margin on two public datasets.Comment: 30th British Machine Vision Conference (BMVC

    PPT: token-Pruned Pose Transformer for monocular and multi-view human pose estimation

    Full text link
    Recently, the vision transformer and its variants have played an increasingly important role in both monocular and multi-view human pose estimation. Considering image patches as tokens, transformers can model the global dependencies within the entire image or across images from other views. However, global attention is computationally expensive. As a consequence, it is difficult to scale up these transformer-based methods to high-resolution features and many views. In this paper, we propose the token-Pruned Pose Transformer (PPT) for 2D human pose estimation, which can locate a rough human mask and performs self-attention only within selected tokens. Furthermore, we extend our PPT to multi-view human pose estimation. Built upon PPT, we propose a new cross-view fusion strategy, called human area fusion, which considers all human foreground pixels as corresponding candidates. Experimental results on COCO and MPII demonstrate that our PPT can match the accuracy of previous pose transformer methods while reducing the computation. Moreover, experiments on Human 3.6M and Ski-Pose demonstrate that our Multi-view PPT can efficiently fuse cues from multiple views and achieve new state-of-the-art results.Comment: ECCV 2022. Code is available at https://github.com/HowieMa/PP

    Fluorescent Properties of ZnO Nanostructures Fabricated by Hydrothermal Method

    Get PDF
    ZnO nanorods with mean diameter 200 nm on different substrates were fabricated by hydrothermal method. Fluorescent properties of fabricated ZnO nanorods were researched by both linear and nonlinear excitation using femtosecond lasers. The damage threshold of productions on Si substrate irradiated under intense femtosecond pulses was found much higher than that on Zn plate. Raman spectrum was also applied to investigate relative optical properties. The A1L optical mode was found to be important to the fluorescent properties of ZnO materials

    Multi-quartz-enhanced photoacoustic spectroscopy

    Get PDF
    A multi-quartz-enhanced photoacoustic spectroscopy (M-QEPAS) sensor system for trace gas detection is reported. Instead of a single quartz tuning fork (QTF) as used in QEPAS technique, a dual QTF sensor platform was adopted in M-QEPAS to increase the signal strength by the addition of the detected QEPAS signals. Water vapor was selected as the target analyte. M-QEPAS realized a 1.7 times signal enhancement as compared to the QEPAS method for the same operating conditions. A minimum detection limit of 23.9 ppmv was achieved for the M-QEPAS sensor, with a calculated normalized noise equivalent absorption coefficient of 5.95 × 10−8 cm−1W/√Hz. The M-QEPAS sensor performance can be further improved when more QTFs are employed or an acoustic micro-resonator architecture is used
    • …
    corecore