5 research outputs found

    Clever pest control? The role of cognition in biological pest regulation

    Get PDF
    Crop pest management is a global challenge. Increases in agricultural intensity due to anthropogenic demands, alongside the need to reduce the reliance on pesticides to minimize environmental harm, have resulted in an urgent need to improve and expand other methods of pest control. One increasingly utilized method is biological pest control, in which natural pest predators are used to regulating crop pests. Current approaches to biological pest regulation assess the importance of a pest controller by examining its ability to maintain pest populations over an extended period. However, this approach lacks efficiency, specificity, and efficacy because it does not take into account crucial factors which determine how predators find, evaluate and remember food sources—the cognitive processes underlying their behavior. This review will investigate the cognitive factors involved in biological pest control and examine how these factors may be manipulated to impact pest behavior and pest controller performance

    Does agricultural intensification impact pest regulation service by frogs in a natural multi-trophic system?

    No full text
    Agricultural intensification is a major driver of biodiversity loss. However, the exact impacts of such loss of key ecosystem service (ES) provisions in agriculture require more scrutiny. We assessed the population loss impacts of a key ES-providing species in an agricultural landscape. We tested the hypothesis that intensive agriculture causes density reduction of frogs known as pest regulators and that negatively affects pest regulation. Different frog densities (high and low) observed in a previous study in low and high agricultural intensification areas were used as treatments in a semi-controlled field experiment. Functional response of the frog species was also studied. Neither high nor low frog density had any significant effect on respective pest populations. Limited feeding rate of the frog species might have contributed to reduced predation pressure on pests. Surprisingly, at low density, frogs significantly reduced the arthropod natural enemies, probably their preferred prey due to the latter’s agility. Unlike in low frog density treatment, increased intraspecific competition at high frog density made them seek out pests as alternative prey to the preferred arthropod pest enemies, whose populations were not affected by frog density. This study for the first time links the population loss of frogs, a potential bio-control agent to ES provision in a multi-trophic system

    At home in Jiangsu: Environmental niche modeling and new records for five species of amphibian and reptile in Jiangsu, China

    No full text
    Environmental niche models are useful tools for generating hypotheses for the distribution of species and informing conservation planning, especially at the edge of species’ ranges and for those with limited data. Here we report on the recent documentation of four species of amphibian (Hylarana latouchii, Odorrana tianmuii, Polypedates braueri, and Zhangixalus dennysi) and one reptile (Protobothrops mucrosquamatus) with few or no previous geolocated records from Jiangsu, China. We combined our opportunistic field sampling data from Jiangsu, which is at the edge of each of these species’ ranges, with publicly available occurrence records and climatic data to generate environmental niche models for these five species using Maxent. All models showed good model performance with AUC values ranging from 0.899 to 0.983. Additional potentially suitable areas within southern Jiangsu were predicted for the four amphibian species, although the significant anthropogenic habitat modifications in the province may limit their contemporary distributions. For all five species, the climatic variable that contributed most to the model was the precipitation of the driest month (Bio 14), indicating they are limited by moisture availability. Our study adds new information about the climatic preferences of these five species and highlights the value of complementing environmental niche modeling with field surveys for robust inferences and conservation planning, particularly at the edge of species’ ranges

    At home in Jiangsu: Environmental niche modeling and new records for five species of amphibian and reptile in Jiangsu, China

    No full text
    Environmental niche models are useful tools for generating hypotheses for the distribution of species and informing conservation planning, especially at the edge of species’ ranges and for those with limited data. Here we report on the recent documentation of four species of amphibian (Hylarana latouchii, Odorrana tianmuii, Polypedates braueri, and Zhangixalus dennysi) and one reptile (Protobothrops mucrosquamatus) with few or no previous geolocated records from Jiangsu, China. We combined our opportunistic field sampling data from Jiangsu, which is at the edge of each of these species’ ranges, with publicly available occurrence records and climatic data to generate environmental niche models for these five species using Maxent. All models showed good model performance with AUC values ranging from 0.899 to 0.983. Additional potentially suitable areas within southern Jiangsu were predicted for the four amphibian species, although the significant anthropogenic habitat modifications in the province may limit their contemporary distributions. For all five species, the climatic variable that contributed most to the model was the precipitation of the driest month (Bio 14), indicating they are limited by moisture availability. Our study adds new information about the climatic preferences of these five species and highlights the value of complementing environmental niche modeling with field surveys for robust inferences and conservation planning, particularly at the edge of species’ ranges
    corecore