62 research outputs found

    Improving Biomethane Production and Mass Bioconversion of Corn Stover Anaerobic Digestion by Adding NaOH Pretreatment and Trace Elements

    Get PDF
    This research applied sodium hydroxide (NaOH) pretreatment and trace elements to improve biomethane production when using corn stover for anaerobic digestion. Full-factor experimental tests identified the best combination of trace elements with the NaOH pretreatment, indicating that the best combination was with 1.0, 0.4, and 0.4 mg⋅L −1 ⋅d −1 of elements Fe, Co, and Ni, respectively. The cumulative biomethane production adding NaOH pretreatment and trace elements was 11,367 mL; total solid bioconversion rate was 55.7%, which was 41.8%-62.2% higher than with NaOH-pretreatment alone and 22.2%-56.3% higher than with untreated corn stover. The best combination was obtained 5-9 days shorter than T 90 and maintained good system operation stability. Only a fraction of the trace elements in the best combination was present in the resulting solution; more than 85% of the total amounts added were transferred into the solid fraction. Adding 0.897 g of Fe, 0.389 g of Co, and 0.349 g of Ni satisfied anaerobic digestion needs and enhanced biological activity at the beginning of the operation. The results showed that NaOH pretreatment and adding trace elements improve corn stover biodegradability and enhance biomethane production

    Validating quantum-supremacy experiments with exact and fast tensor network contraction

    Full text link
    The quantum circuits that declare quantum supremacy, such as Google Sycamore [Nature \textbf{574}, 505 (2019)], raises a paradox in building reliable result references. While simulation on traditional computers seems the sole way to provide reliable verification, the required run time is doomed with an exponentially-increasing compute complexity. To find a way to validate current ``quantum-supremacy" circuits with more than 5050 qubits, we propose a simulation method that exploits the ``classical advantage" (the inherent ``store-and-compute" operation mode of von Neumann machines) of current supercomputers, and computes uncorrelated amplitudes of a random quantum circuit with an optimal reuse of the intermediate results and a minimal memory overhead throughout the process. Such a reuse strategy reduces the original linear scaling of the total compute cost against the number of amplitudes to a sublinear pattern, with greater reduction for more amplitudes. Based on a well-optimized implementation of this method on a new-generation Sunway supercomputer, we directly verify Sycamore by computing three million exact amplitudes for the experimentally generated bitstrings, obtaining an XEB fidelity of 0.191%0.191\% which closely matches the estimated value of 0.224%0.224\%. Our computation scales up to 41,932,80041,932,800 cores with a sustained single-precision performance of 84.884.8 Pflops, which is accomplished within 8.58.5 days. Our method has a far-reaching impact in solving quantum many-body problems, statistical problems as well as combinatorial optimization problems where one often needs to contract many tensor networks which share a significant portion of tensors in common.Comment: 7 pages, 4 figures, comments are welcome

    Suggestions on the development strategy of shale gas in China

    Get PDF
    AbstractFrom the aspects of shale gas resource condition, main exploration and development progress, important breakthrough in key technologies and equipment, this paper systematically summarized and analyzed current situation of shale gas development in China and pointed out five big challenges such as misunderstandings, lower implementation degree and higher economic uncertainty of shale gas resource, and still no breakthrough in exploration and development core technologies and equipment for shale gas buried depth more than 3500 m, higher cost and other non-technical factors that restrict the development pace. Aiming at the above challenges, we put forward five suggestions to promote the shale gas development in China: (1) Make strategies and set goals according to our national conditions and exploration and development stages. That is, make sure to realize shale gas annual production of 20 × 109 m3, and strives to reach 30 × 109 m3. (2) Attach importance to the research of accumulation and enrichment geological theory and exploration & development key engineering technologies for lower production and lower pressure marine shale gas reservoir, and at the same time orderly promote the construction of non-marine shale gas exploration & development demonstration areas. (3) The government should introduce further policies and set special innovation funds to support the companies to carry out research and development of related technologies and equipment, especially to strengthen the research and development of technology, equipment and process for shale gas bellow 3500 m in order to achieve breakthrough in deep shale gas. (4) Continue to promote the geological theory, innovation in technology and management, and strengthen cost control on drilling, fracturing and the whole process in order to realize efficient, economic and scale development of China's shale gas. (5) Reform the mining rights management system, establish information platform of shale gas exploration and development data, and correctly guide the non-oil and gas companies to participate in shale gas exploration and development

    The coupling coordination between health service supply and regional economy in China: spatio-temporal evolution and convergence

    Get PDF
    BackgroundThe coordination of health service supply and regional economy is an integral path to promote China’s prosperity.MethodsBased on the coupling mechanism of health service supply and regional economy, we sampled the data from 30 provinces in China from 2009 to 2021 in this study and constructed the evaluation index system. Additionally, we calculated the coupling coordination degree (HED) of the two through the coupling coordination degree model. We further used the kernel density estimation, Moran’s I index, and spatial β convergence model to assess the dynamic evolution trends, spatial aggregation effect, and spatial convergence characteristics of coupling coordination.Conclusion(1) HED in China showed a rising trend during the study period but with large regional differences, forming a gradient distribution pattern of “high in the east and low in the west.” (2) The results of Kernel density estimation show that HED has formed a gradient differentiation phenomenon within each region in China. (3) HED has modeled spatial clustering characteristics during the study period, with high-value clusters mainly appearing in the eastern region and low-value clusters appearing in the northwestern region. (4) There are absolute β-convergence and conditional β-convergence trends in HED in China and the three major regions during the study period, but there is an obvious regional heterogeneity in the control factors. The research provides a reference for accurately implementing policies according to different levels of health service supply and economic development, in addition to narrowing the regional differences of the coupling coordination between the regional economy and health service supply

    SCIENCE IN CHINA (Series G) Evolution of three-dimensional coherent structures in compressible axisymmetric jet

    No full text
    Abstract A high order difference scheme is used to simulate the spatially developing compressible axisymmetric jet. The results show that the Kelvin-Helmholtz instability appears first when the jet loses its stability, and then with development of jet the increase in nonlinear effects leads to the secondary instability and the formation of the streamwise vortices. The evolution of the threedimensional coherent structure is presented. The computed results verify that in axisymmetric jet the secondary instability and formation of the streamwise vortices are the important physical mechanism of enhancing the flow mixing and transition occurring

    Structure and Doping Optimization of IDT-Based Copolymers for Thermoelectrics

    No full text
    π-conjugated backbones play a fundamental role in determining the thermoelectric (TE) properties of organic semiconductors. Understanding the relationship between the structure–property–function can help us screen valuable materials. In this study, we designed and synthesized a series of conjugated copolymers (P1, P2, and P3) based on an indacenodithiophene (IDT) building block. A copolymer (P3) with an alternating donor–acceptor (D-A) structure exhibits a narrower band gap and higher carrier mobility, which may be due to the D-A structure that helps reduce the charge carrier transport obstacles. In the end, its power factor reaches 4.91 μW m−1 K−2 at room temperature after doping, which is superior to those of non-D-A IDT-based copolymers (P1 and P2). These results indicate that moderate adjustment of the polymer backbone is an effective way to improve the TE properties of copolymers

    Authigenic embrittlement of marine shale in the process of diagenesis

    No full text
    Studies on the origin of shale brittleness are of great significance to understanding shale gas accumulation laws. The current studies, however, mostly focus on the improvement of shale brittleness by biological quartz enrichment, but rarely on the recrystallization of quartz in the process of diagenetic evolution. In this paper, a series of researches were carried out on the Lower Silurian Longmaxi Fm marine shale in the Changning block of the Sichuan Basin. Firstly, shale pore, mineral component and bedding characteristics were observed by means of cathodoluminescence (CL), scanning electron microscope (SEM) and so on. Then, the control effects of quartz origin, overpressure environment and diagenetic evolution on shale brittleness were investigated by analyzing the mineral composition and siliceous composition of shale microscopically. Finally, the authigenic embrittlement model of marine shale was put forward and the geological significance of authigenic microcrystalline quartz to the improvement of shale brittleness in the process of diagenesis was illustrated. The following results were obtained. First, during the sedimentation, burial and diagenetic evolution, shale experiences diagenetic changes which help increase quartz content and form concealed fracture networks, thus benefiting the formation of complex flow pathways in later stimulation. Second, organic matters play a positive role in improving shale brittleness in the process of geological evolution. It promotes the formation of authigenic microcrystalline quartz and improves the brittleness of shale. In conclusion, due to the authigenic embrittlement of shale in the process of diagenesis, rock structure is changed, rock strength is enhanced and shale porosity is preserved. Consequently, reservoir space in shale is improved and the enrichment state of shale gas is modified. Therefore, the preservation condition under the control of tectonic movement factors is vital to geological evaluation on shale gas. In addition, marine shale is certainly well brittle after authigenic embrittlement in the process of diagenesis as long as its organic matter content is abundant. Keywords: Marine shale, Quartz, Recrystallization, Authigenic embrittlement, Concealed fracture network, Brittleness improvement, Sichuan Basin, Changning block, Early Silurian, Longmaxi F

    Improving Biomethane Production and Mass Bioconversion of Corn Stover Anaerobic Digestion by Adding NaOH Pretreatment and Trace Elements

    No full text
    This research applied sodium hydroxide (NaOH) pretreatment and trace elements to improve biomethane production when using corn stover for anaerobic digestion. Full-factor experimental tests identified the best combination of trace elements with the NaOH pretreatment, indicating that the best combination was with 1.0, 0.4, and 0.4 mg·L−1·d−1 of elements Fe, Co, and Ni, respectively. The cumulative biomethane production adding NaOH pretreatment and trace elements was 11,367 mL; total solid bioconversion rate was 55.7%, which was 41.8%–62.2% higher than with NaOH-pretreatment alone and 22.2%–56.3% higher than with untreated corn stover. The best combination was obtained 5–9 days shorter than T90 and maintained good system operation stability. Only a fraction of the trace elements in the best combination was present in the resulting solution; more than 85% of the total amounts added were transferred into the solid fraction. Adding 0.897 g of Fe, 0.389 g of Co, and 0.349 g of Ni satisfied anaerobic digestion needs and enhanced biological activity at the beginning of the operation. The results showed that NaOH pretreatment and adding trace elements improve corn stover biodegradability and enhance biomethane production
    corecore