170 research outputs found
Search for Nanosecond Near-infrared Transients around 1280 Celestial Objects
Stars and planetary system
Distances for Weighted Transition Systems: Games and Properties
We develop a general framework for reasoning about distances between
transition systems with quantitative information. Taking as starting point an
arbitrary distance on system traces, we show how this leads to natural
definitions of a linear and a branching distance on states of such a transition
system. We show that our framework generalizes and unifies a large variety of
previously considered system distances, and we develop some general properties
of our distances. We also show that if the trace distance admits a recursive
characterization, then the corresponding branching distance can be obtained as
a least fixed point to a similar recursive characterization. The central tool
in our work is a theory of infinite path-building games with quantitative
objectives.Comment: In Proceedings QAPL 2011, arXiv:1107.074
A Complete Axiom System for Propositional Interval Temporal Logic with Infinite Time
Interval Temporal Logic (ITL) is an established temporal formalism for
reasoning about time periods. For over 25 years, it has been applied in a
number of ways and several ITL variants, axiom systems and tools have been
investigated. We solve the longstanding open problem of finding a complete
axiom system for basic quantifier-free propositional ITL (PITL) with infinite
time for analysing nonterminating computational systems. Our completeness proof
uses a reduction to completeness for PITL with finite time and conventional
propositional linear-time temporal logic. Unlike completeness proofs of equally
expressive logics with nonelementary computational complexity, our semantic
approach does not use tableaux, subformula closures or explicit deductions
involving encodings of omega automata and nontrivial techniques for
complementing them. We believe that our result also provides evidence of the
naturalness of interval-based reasoning
Using targeted enrichment of nuclear genes to increase phylogenetic resolution in the neotropical rain forest genus Inga (Leguminosae: Mimosoideae)
Evolutionary radiations are prominent and pervasive across many plant lineages in diverse geographical and ecological settings; in neotropical rainforests there is growing evidence suggesting that a significant fraction of species richness is the result of recent radiations. Understanding the evolutionary trajectories and mechanisms underlying these radiations demands much greater phylogenetic resolution than is currently available for these groups. The neotropical tree genus Inga (Leguminosae) is a good example, with ~300 extant species and a crown age of 2–10 MY, yet over 6 kb of plastid and nuclear DNA sequence data gives only poor phylogenetic resolution among species. Here we explore the use of larger-scale nuclear gene data obtained though targeted enrichment to increase phylogenetic resolution within Inga. Transcriptome data from three Inga species were used to select 264 nuclear loci for targeted enrichment and sequencing. Following quality control to remove probable paralogs from these sequence data, the final dataset comprised 259,313 bases from 194 loci for 24 accessions representing 22 Inga species and an outgroup (Zygia). Bayesian phylogenies reconstructed using either all loci concatenated or a gene-tree/species-tree approach yielded highly resolved phylogenies. We used coalescent approaches to show that the same targeted enrichment data also have significant power to discriminate among alternative within-species population histories within the widespread species I. umbellifera. In either application, targeted enrichment simplifies the informatics challenge of identifying orthologous loci associated with de novo genome sequencing. We conclude that targeted enrichment provides the large volumes of phylogenetically-informative sequence data required to resolve relationships within recent plant species radiations, both at the species level and for within-species phylogeographic studies
Facile Synthesis of Amine-Functionalized Eu3+-Doped La(OH)3 Nanophosphors for Bioimaging
Here, we report a straightforward synthesis process to produce colloidal Eu3+-activated nanophosphors (NPs) for use as bioimaging probes. In this procedure, poly(ethylene glycol) serves as a high-boiling point solvent allowing for nanoscale particle formation as well as a convenient medium for solvent exchange and subsequent surface modification. The La(OH)3:Eu3+ NPs produced by this process were ~3.5 nm in diameter as determined by transmission electron microscopy. The NP surface was coated with aminopropyltriethoxysilane to provide chemical functionality for attachment of biological ligands, improve chemical stability and prevent surface quenching of luminescent centers. Photoluminescence spectroscopy of the NPs displayed emission peaks at 597 and 615 nm (λex = 280 nm). The red emission, due to 5D0 → 7F1 and 5D0 → 7F2 transitions, was linear with concentration as observed by imaging with a conventional bioimaging system. To demonstrate the feasibility of these NPs to serve as optical probes in biological applications, an in vitro experiment was performed with HeLa cells. NP emission was observed in the cells by fluorescence microscopy. In addition, the NPs displayed no cytotoxicity over the course of a 48-h MTT cell viability assay. These results suggest that La(OH)3:Eu3+ NPs possess the potential to serve as a luminescent bioimaging probe
Studying Black Holes on Horizon Scales with VLBI Ground Arrays
High-resolution imaging of supermassive black holes is now possible, with new applications to testing general relativity and horizon-scale accretion and relativistic jet formation processes. Over the coming decade, the EHT will propose to add new strategically placed VLBI elements operating at 1.3mm and 0.87mm wavelength. In parallel, development of next-generation backend instrumentation, coupled with high throughput correlation architectures, will boost sensitivity, allowing the new stations to be of modest collecting area while still improving imaging fidelity and angular resolution. The goal of these efforts is to move from imaging static horizon scale structure to dynamic reconstructions that capture the processes of accretion and jet launching in near real time
- …