2,976 research outputs found
Performance in the MRCP(UK) Examination 2003-4: analysis of pass rates of UK graduates in relation to self-declared ethnicity and gender
Background: Male students and students from ethnic minorities have been reported to underperform in undergraduate medical examinations. We examined the effects of ethnicity and gender on pass rates in UK medical graduates sitting the Membership of the Royal Colleges of Physicians in the United Kingdom [MRCP( UK)] Examination in 2003-4. Methods: Pass rates for each part of the examination were analysed for differences between graduate groupings based on self- declared ethnicity and gender.Results: All candidates declared their gender, and 84 - 90% declared their ethnicity. In all three parts of the examination, white candidates performed better than other ethnic groups (P < 0.001). In the MRCP(UK) Part 1 and Part 2 Written Examinations, there was no significant difference in pass rate between male and female graduates, nor was there any interaction between gender and ethnicity. In the Part 2 Clinical Examination (Practical Assessment of Clinical Examination Skills, PACES), women performed better than did men (P < 0.001). Non-white men performed more poorly than expected, relative to white men or non-white women. Analysis of individual station marks showed significant interaction between candidate and examiner ethnicity for performance on communication skills (P = 0.011), but not on clinical skills (P = 0.176). Analysis of overall average marks showed no interaction between candidate gender and the number of assessments made by female examiners (P = 0.151).Conclusion: The cause of these differences is most likely to be multifactorial, but cannot be readily explained in terms of previous educational experience or differential performance on particular parts of the examination. Potential examiner prejudice, significant only in the cases where there were two non- white examiners and the candidate was non- white, might indicate different cultural interpretations of the judgements being made
All-electron Exact Exchange Treatment of Semiconductors: Effect of Core-valence Interaction on Band-gap and -band Position
Exact exchange (EXX) Kohn-Sham calculations within an all-electron
full-potential method are performed on a range of semiconductors and insulators
(Ge, GaAs, CdS, Si, ZnS, C, BN, Ne, Ar, Kr and Xe). We find that the band-gaps
are not as close to experiment as those obtained from previous pseudopotential
EXX calculations. Full-potential band-gaps are also not significantly better
for semiconductors than for insulators, as had been found for
pseudopotentials. The locations of -band states, determined using the
full-potential EXX method, are in excellent agreement with experiment,
irrespective of whether these states are core, semi-core or valence. We
conclude that the inclusion of the core-valence interaction is necessary for
accurate determination of EXX Kohn-Sham band structures, indicating a possible
deficiency in pseudopotential calculations.Comment: 4 pages 2 fig
The Absence of Vortex Lattice Melting in a Conventional Superconductor
The state of the vortex lattice extremely close to the superconducting to
normal transition in an applied magnetic field is investigated in high purity
niobium. We observe that thermal fluctuations of the order parameter broaden
the superconducting to normal transition into a crossover but no sign of a
first order vortex lattice melting transition is detected in measurements of
the heat capacity or the small angle neutron scattering (SANS) intensity.
Direct observation of the vortices via SANS always finds a well ordered vortex
lattice. The fluctuation broadening is considered in terms of the Lowest Landau
Level theory of critical fluctuations and scaling is found to occur over a
large H_{c2}(T) range
Recommended from our members
LENS® and SFF: Enabling Technologies for Optimized Structures
Optimized, lightweight, high-strength structures are needed in many applications from aerospace
to automotive. In pursuit of such structures, there have been proposed analytical solutions and
some specialized FEA solutions for specific structures such as automobile frames. However,
generalized 3D optimization methods have been unavailable for use by most designers.
Moreover, in the cases where optimized structural solutions are available, they are often hollow,
curving, thin wall structures that cannot be fabricated by conventional manufacturing methods.
Researchers at Sandia National Laboratories and the University of Rhode Island teamed to solve
these problems. The team has been pursuing two methods of optimizing models for generalized
loading conditions, and also has been investigating the methods needed to fabricate these
structures using Laser Engineered Net Shaping™ (LENS®) and other rapid prototyping
methods. These solid freeform fabrication (SFF) methods offer the unique ability to make
hollow, high aspect ratio features out of many materials. The manufacturing development
required for LENS to make these complex structures has included the addition of rotational axes
to Sandia’s LENS machine bringing the total to 5 controlled axes. The additional axes have
required new efforts in process planning. Several of the unique structures that are only now
possible through the use of SFF technology are shown as part of the discussion of this exciting
new application for SFF.Mechanical Engineerin
- …