2,704 research outputs found
Evaluation of the usefulness of a computerâbased learning program to support student learning in pharmacology
This study aims to evaluate the effectiveness of a computerâbased teaching program in supporting and enhancing traditional teaching methods. The program covers the pharmacology of inflammation and has been evaluated with a group of secondâyear medical students at a UK university. The study assessed subjectâspecific knowledge using a preâ and postâtest and surveyed, by questionnaire, studentsâ perceptions of the usefulness of the program to support learning before and after use. The use of computers for learning amongst this cohort of students was widespread. The results demonstrated an increase in students â knowledge of the pharmacology of inflammation, coupled with a positive attitude towards the CBL program they had used and the advantages that this mode of study may provide in enabling students to manage their own learning. However, students did not feel that the program could substitute for traditional teaching (lectures)
Theoretical Investigation of Optical Conductivity in Ba [Fe(1-x)Co(x)]2 As2
We report on theoretical calculations of the optical conductivity of Ba
[Fe(1-x)Co(x)]2 As2, as obtained from density functional theory within the full
potential LAPW method. A thorough comparison with experiment shows that we are
able to reproduce most of the observed experimental features, in particular a
magnetic peak located at about 0.2 eV which we ascribe to antiferromagnetic
ordered magnetic stripes. We also predict a large in-plane anisotropy of this
feature, which agrees very well with measurements on detwinned crystals. The
effect of Co doping as well as the dependence of plasma frequency on the
magnetic order is also investigated
Static and Dynamical Susceptibility of LaO1-xFxFeAs
The mechanism of superconductivity and magnetism and their possible interplay
have recently been under debate in pnictides. A likely pairing mechanism
includes an important role of spin fluctuations and can be expressed in terms
of the magnetic susceptibility chi. The latter is therefore a key quantity in
the determination of both the magnetic properties of the system in the normal
state, and of the contribution of spin fluctuations to the pairing potential. A
basic ingredient to obtain chi is the independent-electron susceptibility chi0.
Using LaO1-xFxFeAs as a prototype material, in this report we present a
detailed ab-initio study of chi0(q,omega), as a function of doping and of the
internal atomic positions. The resulting static chi0(q,0) is consistent with
both the observed M-point related magnetic stripe phase in the parent compound,
and with the existence of incommensurate magnetic structures predicted by
ab-initio calculations upon doping.Comment: 15 pages, 8 figure
Smooth pursuits decrease balance control during locomotion in young and older healthy females.
Dynamic balance control-characterised as movement of the trunk and lower limbs-was assessed during fixation of a fixed target, smooth pursuits and saccadic eye movements in ten young (22.9 ± 1.5 years) and ten older (72.1 ± 8.2 years) healthy females walking overground. Participants were presented with visual stimuli to initiate eye movements, and posture and gaze were assessed with motion analysis and eye tracking equipment. The results showed an increase in medial/lateral (ML) trunk movement (C7: p = 0.012; sacrum: p = 0.009) and step-width variability (p = 0.052) during smooth pursuits compared to a fixed target, with no changes for saccades compared to a fixed target. The elders demonstrated greater ML trunk movement (sacrum: p = 0.037) and step-width variability (p = 0.037) than the younger adults throughout, although this did not interact with the eye movements. The findings showed that smooth pursuits decreased balance control in young and older adults similarly, which was likely a consequence of more complicated retinal flow. Since healthy elders are typically already at a postural disadvantage, further decreases in balance caused by smooth pursuits are undesirable
Probing fractal magnetic domains on multiple length scales in Nd2Fe14B
Using small-angle neutron scattering, we demonstrate that the complex
magnetic domain patterns at the surface of Nd2Fe14B, revealed by quantitative
Kerr and Faraday microscopy, propagate into the bulk and exhibit structural
features with dimensions down to 6 nm, the domain wall thickness. The observed
fractal nature of the domain structures provides an explanation for the
anomalous increase in the bulk magnetization of Nd2Fe14B below the
spin-reorientation transition. These measurements open up a rich playground for
studies of fractal structures in highly anisotropic magnetic systems.Comment: Accepted for publication in Phys. Rev. Lett. (4 pages, 4 figures
Phononic Self energy effects and superconductivity in CaC
We study the graphite intercalated compound CaC by means of Eliashberg
theory, focusing on the anisotropy properties. An analysis of the
electron-phonon coupling is performed, and we define a minimal 6-band
anisotropy structure. Comparing with Superconducting Density Functional Theory
(SCDFT) the condition under which Eliashberg theory is able to reproduce the
SCDFT gap structure is determined, and we discuss the role of Coulomb
interactions. The Engelsberg-Schrieffer polaron structure is computed by
solving the Eliashberg equation on the Matsubara axis and analytically
continuing it to the full complex plane. This reveals the polaronic
quasiparticle bands anisotropic features as well as the interplay with
superconductivity
Weak superconducting pairing and a single isotropic energy gap in stoichiometric LiFeAs
We report superconducting (SC) properties of stoichiometric LiFeAs (Tc = 17
K) studied by small-angle neutron scattering (SANS) and angle-resolved
photoemission (ARPES). Although the vortex lattice exhibits no long-range
order, well-defined SANS rocking curves indicate better ordering than in
chemically doped 122-compounds. The London penetration depth of 210 nm,
determined from the magnetic field dependence of the form factor, is compared
to that calculated from the ARPES band structure with no adjustable parameters.
Its temperature dependence is best described by a single isotropic SC gap of
3.0 meV, which agrees with the ARPES value of 3.1 meV and corresponds to the
ratio 2Delta/kTc = 4.1, approaching the weak-coupling limit predicted by the
BCS theory. This classifies LiFeAs as a weakly coupled single-gap
superconductor, similar to conventional metals.Comment: 4 pages, 4 figure
- âŠ