5,765 research outputs found
A Future Teachers Conference – A Vehicle to Retain, Inform, and Inspire New and Prospective Teachers
The Los Angeles Collaborative for Teacher Excellence (LACTE) Future Teachers Conference is a day-long learning event for beginning and pre-service K-12 math and science teachers. The Conference provides information, resources and connections tailored to the needs of prospective and new teachers. A unique aspect of the conference is that a group of new and future teachers serve as partners with college faculty on the planning committee. Thus the Conference not only serves to educate new and future teachers, but also provides leadership training for the planning team members; and, the presence of prospective and new teachers on the planning team ensures that the conference sessions effectively target the intended audience\u27s interests. This conference is the most popular activity for new and prospective teachers in the Collaborative. Over the five years the conference has been held, its attendance has grown to 120-150 participants annually. A planning handbook is available to assist anyone interested in organizing a similar event
MHD Memes
The celebration of Allan Kaufman's 80th birthday was an occasion to reflect
on a career that has stimulated the mutual exchange of ideas (or memes in the
terminology of Richard Dawkins) between many researchers. This paper will
revisit a meme Allan encountered in his early career in magnetohydrodynamics,
the continuation of a magnetohydrodynamic mode through a singularity, and will
also mention other problems where Allan's work has had a powerful
cross-fertilizing effect in plasma physics and other areas of physics and
mathematics.Comment: Submitted for publication in IOP Journal of Physics: Conference
Series for publication in "Plasma Theory, Wave Kinetics, and Nonlinear
Dynamics", Proceedings of KaufmanFest, 5-7 October 2007, University of
California, Berkeley, US
Corticospinal and reticulospinal contacts on cervical commissural and long descending propriospinal neurons in the adult rat spinal cord; evidence for powerful reticulospinal connections
Descending systems have a crucial role in the selection of motor output patterns by influencing the activity of interneuronal networks in the spinal cord. Commissural interneurons that project to the contralateral grey matter are key components of such networks as they coordinate left-right motor activity of fore and hind-limbs. The aim of this study was to determine if corticospinal (CST) and reticulospinal (RST) neurons make significant numbers of axonal contacts with cervical commissural interneurons. Two classes of commissural neurons were analysed: 1) local commissural interneurons (LCINs) in segments C4-5; 2) long descending propriospinal neurons (LDPNs) projecting from C4 to the rostral lumbar cord. Commissural interneurons were labelled with Fluorogold and CST and RST axons were labelled by injecting the b subunit of cholera toxin in the forelimb area of the primary somatosensory cortex or the medial longitudinal fasciculus respectively. The results show that LCINs and LDPNs receive few contacts from CST terminals but large numbers of contacts are formed by RST terminals. Use of vesicular glutamate and vesicular GABA transporters revealed that both types of cell received about 80% excitatory and 20% inhibitory RST contacts. Therefore the CST appears to have a minimal influence on LCINs and LDPNs but the RST has a powerful influence. This suggests that left-right activity in the rat spinal cord is not influenced directly via CST systems but is strongly controlled by the RST pathway. Many RST neurons have monosynaptic input from corticobulbar pathways therefore this pathway may provide an indirect route from the cortex to commissural systems. The cortico-reticulospinal-commissural system may also contribute to functional recovery following damage to the CST as it has the capacity to deliver information from the cortex to the spinal cord in the absence of direct CST input
Nonaxisymmetric, multi-region relaxed magnetohydrodynamic equilibrium solutions
We describe a magnetohydrodynamic (MHD) constrained energy functional for
equilibrium calculations that combines the topological constraints of ideal MHD
with elements of Taylor relaxation.
Extremizing states allow for partially chaotic magnetic fields and
non-trivial pressure profiles supported by a discrete set of ideal interfaces
with irrational rotational transforms.
Numerical solutions are computed using the Stepped Pressure Equilibrium Code,
SPEC, and benchmarks and convergence calculations are presented.Comment: Submitted to Plasma Physics and Controlled Fusion for publication
with a cluster of papers associated with workshop: Stability and Nonlinear
Dynamics of Plasmas, October 31, 2009 Atlanta, GA on occasion of 65th
birthday of R.L. Dewar. V2 is revised for referee
Opportunities for weed manipulation using GMHT row crops
The herbicides and cultivation systems available in most non-GM crops allow farmers little flexibility as to when they control weeds. However, glyphosate and glufosinate-ammonium, as used in GM herbicide tolerant crops, offer the opportunity to control large weeds and weed control can be timed according to the agronomic and environmental aims of the user. This paper will use sugar beet as a model crop and report results where different approaches to weed control have been used and discuss their relevance in the wider agricultural and environmental contextNon peer reviewe
Multi-region relaxed magnetohydrodynamics with anisotropy and flow
We present an extension of the multi-region relaxed magnetohydrodynamics
(MRxMHD) equilibrium model that includes pressure anisotropy and general plasma
flows. This anisotropic extension to our previous isotropic model is motivated
by Sun and Finn's model of relaxed anisotropic magnetohydrodynamic equilibria.
We prove that as the number of plasma regions becomes infinite, our anisotropic
extension of MRxMHD reduces to anisotropic ideal MHD with flow. The
continuously nested flux surface limit of our MRxMHD model is the first
variational principle for anisotropic plasma equilibria with general flow
fields.Comment: 11 pages, 2 figures. arXiv admin note: text overlap with
arXiv:1401.307
Combining mechanism and drift in community ecology: a novel statistical mechanics approach
A key challenge for models of community ecology is to combine deterministic mechanism and stochastic drift in a systematic, transparent and tractable manner. Another challenge is to explain and unify different ecological patterns, hitherto modelled in isolation, within a single modelling framework. Here, we show that statistical mechanics provides an effective way to meet both challenges. We apply the statistical principle of maximum entropy (MaxEnt) to a simple resource-based, non-neutral model of a plant community. In contrast to previous ecological applications of MaxEnt, our use of MaxEnt emphasises its theoretical basis in the combinatorics of sampling frequencies, an approach that clarifies its ecological interpretation. In this approach, mechanism and drift are identified, respectively, with ecological resource constraints and entropy maximization. We obtain realistic predictions for species abundance distributions as well as contrasting stability-diversity relationships at community and population levels. The model also predicts critical behaviour that may provide a basis for understanding desertification and other ecological tipping points. Our results complement and extend previous ecological applications of MaxEnt to new areas of community ecology, and further illustrate MaxEnt as a powerful yet simple modelling tool for combining mechanism and drift in a way that unifies disparate ecological patterns
- …