56 research outputs found

    Censusing and Measuring Lianas: A Quantitative Comparison of the Common Methods

    Get PDF
    Lianas contribute to many aspects of tropical forest diversity and dynamics, and interest in liana ecology has grown substantially in recent years. Methods to census lianas and estimate biomass, however, differ among studies, possibly hindering attempts to compare liana communities. At Nouragues Research Station (French Guiana), we tested the extent to which liana abundance, basal area, and estimated biomass differed depending on stem diameter measurement location, inclusion of ramets, inclusion of lianas rooted within versus passing through the plot, and plot shape. We found that the mean per plot abundance and basal area of lianas were significantly greater when lianas were measured low on the stem, when ramets were included, and when lianas were sampled in transects (2 × 50 m) than in square plots (10 × 10 m). Mean per plot liana abundance and basal area were 21 percent and 58 percent greater, when stems were measured at the largest spot on the stem compared to 130 cm from the ground, respectively. Including liana ramets increased average per plot liana abundance, basal area, and estimated biomass by 19, 17, and 16 percent, respectively. To facilitate cross‐study comparisons, we developed conversion equations that equate liana abundance, diameter, and basal area based on the measurements taken at four different stem locations. We tested these equations at Lambir Hills National Park, Malaysia and found that they did not differ significantly between the two sites, suggesting that the equations may be broadly applicable. Finally, we present a new allometric equation relating diameter and biomass developed from 424 lianas from five independent data sets collected in four countries

    Liana habitat associations and community structure in a Bornean lowland tropical forest

    Get PDF
    Lianas (woody vines) contribute substantially to the diversity and structure of most tropical forests, yet little is known about the importance of habitat specialization in maintaining tropical liana diversity and the causes of variation among forests in liana abundance and species composition. We examined habitat associations, species diversity, species composition, and community structure of lianas at Sepilok Forest Reserve, Sabah, Malaysia in northeastern Borneo among three soil types that give rise to three distinct forest types of lowland tropical rain forest: alluvial, sandstone hill, and kerangas (heath) forest. Alluvial soils are more nutrient rich and have higher soil moisture than sandstone soils, whereas kerangas soils are the most nutrient poor and drought prone. Lianas ≄0.5-cm in diameter were measured, tagged, and identified to species in three square 0.25-ha plots in each forest type. The number of lianas ≄0.5 cm did not differ significantly among forest types and averaged 1348 lianas ha-1, but mean liana stem diameter, basal area, estimated biomass, species richness, and Fisher\u27s α diversity index were all greater for plots in alluvial than sandstone or kerangas forests. Liana species composition also differed greatly among the three habitats, with 71% of species showing significant positive or negative habitat associations. Sandstone forests were intermediate to alluvial and kerangas forests in most aspects of liana community structure and composition, and fewer species showed significant habitat associations with this forest type. Ranking of forest types with respect to liana density, biomass, and diversity matches the ranking in soil fertility and water availability (alluvial \u3e sandstone hill \u3e kerangas). These results suggest that edaphic factors play an important role in maintaining liana species diversity and structuring liana communities. © Springer 2006

    Fertilization influences the nutrient acquisition strategy of a nomadic vine in a lowland tropical forest understory

    Get PDF
    © 2018, Springer Nature Switzerland AG. Aims: Tropical tree and lianas in the understory are limited by soil nutrients despite growing in extremely low light. It is not known if nomadic vines are also limited by nutrients in low light conditions. Methods: We measured differences in root architecture and mycorrhizal colonization, and leaf nutrients of a nomadic vine, Philodendron fragrantissimum (Araceae), in nitrogen (N) and phosphorus (P) fertilization plots in a lowland tropical moist forest in central Panama to measure potential nutrient limitation. Results: Relative to plants in control plots, leaf P concentration was 54% higher and leaf N concentration was 10% higher for plants in the P- and N-addition treatments, respectively. The N:P of leaves suggested P-limitation in the N-addition treatment and the control but not in the P-addition treatment. Root branching was highest in the P-addition treatment, and P-addition reduced mycorrhizal colonization. Conclusions: The large effect of P fertilization suggests that, like many tropical plants, P. fragrantissimum has the potential to be P-limited. Although further study is needed, we suggest that nomadic vines be added to the growth forms that respond to nutrient addition in the forest understory and conclude that nutrient-limitation seems like the rule rather than the exception in the light-limited understory

    Demographic trade-offs predict tropical forest dynamics

    Get PDF
    Understanding tropical forest dynamics and planning for their sustainable management require efficient, yet accurate, predictions of the joint dynamics of hundreds of tree species. With increasing information on tropical tree life histories, our predictive understanding is no longer limited by species data but by the ability of existing models to make use of it. Using a demographic forest model, we show that the basal area and compositional changes during forest succession in a neotropical forest can be accurately predicted by representing tropical tree diversity (hundreds of species) with only five functional groups spanning two essential trade-offs—the growth-survival and stature-recruitment trade-offs. This data-driven modeling framework substantially improves our ability to predict consequences of anthropogenic impacts on tropical forests

    Above- and belowground carbon stocks are decoupled in secondary tropical forests and are positively related to forest age and soil nutrients respectively

    Get PDF
    Reducing atmospheric CO2 is an international priority. One way to assist stabilising and reducing CO2 is to promote secondary tropical forest regrowth on abandoned agricultural land. However, relationships between above- and belowground carbon stocks with secondary forest age and specific soil nutrients remain unclear. Current global estimates for CO2 uptake and sequestration in secondary tropical forests focus on aboveground biomass and are parameterised using relatively coarse metrics of soil fertility. Here, we estimate total carbon stocks across a chronosequence of regenerating secondary forest stands (40–120 years old) in Panama, and assess the relationships between both above- and belowground carbon stocks with stand age and specific soil nutrients. We estimated carbon stocks in aboveground biomass, necromass, root biomass, and soil. We found that the two largest carbon pools - aboveground biomass and soil – have distinct relationships with stand age and soil fertility. Aboveground biomass contained ~61-97 Mg C ha-1 (24-39 % total carbon stocks) and significantly increased with stand age, but showed no relationship with soil nutrients. Soil carbon stocks contained ~128-206 Mg C ha-1 (52-70 % total stocks) and were unrelated to stand age, but were positively related to soil nitrogen. Root biomass carbon stocks tracked patterns exhibited by aboveground biomass. Necromass carbon stocks did not increase with stand age, but stocks were held in larger pieces of deadwood in older stands. Comparing our estimates to published data from younger and older secondary forests in the surrounding landscape, we show that soil carbon recovers within 40 years of forest regeneration, but aboveground biomass carbon stocks continue to increase past 100 years. Above- and belowground carbon stocks appear to be decoupled in secondary tropical forests. Paired measures of above- and belowground carbon stocks are necessary to reduce uncertainty in large-scale models of atmospheric CO2 uptake and storage by secondary forests

    Incomplete recovery of tree community composition and rare species after 120 years of tropical forest succession in Panama

    Get PDF
    Determining how fully tropical forests regenerating on abandoned land recover characteristics of old-growth forests is increasingly important for understanding their role in conserving rare species and maintaining ecosystem services. Despite this, our understanding of forest structure and community composition recovery throughout succession is incomplete, as many tropical chronosequences do not extend beyond the first 50 years of succession. Here, we examined trajectories of forest recovery across eight 1-hectare plots in middle and later stages of forest succession (40–120 years) and five 1-hectare old-growth plots, in the Barro Colorado Nature Monument (BCNM), Panama. We first verified that forest age had a greater effect than edaphic or topographic variation on forest structure, diversity and composition and then corroborated results from smaller plots censused 20 years previously. Tree species diversity (but not species richness) and forest structure had fully recovered to old-growth levels by 40 and 90 years, respectively. However, rare species were missing, and old-growth specialists were in low abundance, in the mid- and late secondary forest plots, leading to incomplete recovery of species composition even by 120 years into succession. We also found evidence that dominance early in succession by a long-lived pioneer led to altered forest structure and delayed recovery of species diversity and composition well past a century after land abandonment. Our results illustrate the critical importance of old-growth and old secondary forests for biodiversity conservation, given that recovery of community composition may take several centuries, particularly when a long-lived pioneer dominates in early succession

    A Standard Protocol for Liana Censuses

    Get PDF
    A recent increase in published studies of lianas has been paralleled by a proliferation of protocols for censusing lianas. This article seeks to increase uniformity in liana inventories by providing specific recommendations for the determination of which taxa to include, the location of diameter measurement points on individual stems, the setting of minimum stem diameter cutoffs, the treatment of multiple‐stemmed and rooted clonal groups, and the measurement of noncylindrical stems. Use of more uniform liana censusing protocols may facilitate comparison of independently collected data sets and further our understanding of global patterns in liana abundance, diversity, biomass, and dynamics

    A Standard Protocol for Liana Censuses 1

    Full text link
    A recent increase in published studies of lianas has been paralleled by a proliferation of protocols for censusing lianas. This article seeks to increase uniformity in liana inventories by providing specific recommendations for the determination of which taxa to include, the location of diameter measurement points on individual stems, the setting of minimum stem diameter cutoffs, the treatment of multiple-stemmed and rooted clonal groups, and the measurement of noncylindrical stems. Use of more uniform liana censusing protocols may facilitate comparison of independently collected data sets and further our understanding of global patterns in liana abundance, diversity, biomass, and dynamics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75009/1/j.1744-7429.2006.00134.x.pd

    Damage to tropical forests caused by cyclones is driven by wind speed but mediated by topographical exposure and tree characteristics

    Get PDF
    Each year, an average of 45 tropical cyclones affect coastal areas and potentially impact forests. The proportion of the most intense cyclones has increased over the past four decades and is predicted to continue to do so. Yet, it remains uncertain how topographical exposure and tree characteristics can mediate the damage caused by increasing wind speed. Here, we compiled empirical data on the damage caused by 11 cyclones occurring over the past 40 years, from 74 forest plots representing tropical regions worldwide, encompassing field data for 22,176 trees and 815 species. We reconstructed the wind structure of those tropical cyclones to estimate the maximum sustained wind speed (MSW) and wind direction at the studied plots. Then, we used a causal inference framework combined with Bayesian generalised linear mixed models to understand and quantify the causal effects of MSW, topographical exposure to wind (EXP), tree size (DBH) and species wood density (ρ) on the proportion of damaged trees at the community level, and on the probability of snapping or uprooting at the tree level. The probability of snapping or uprooting at the tree level and, hence, the proportion of damaged trees at the community level, increased with increasing MSW, and with increasing EXP accentuating the damaging effects of cyclones, in particular at higher wind speeds. Higher ρ decreased the probability of snapping and to a lesser extent of uprooting. Larger trees tended to have lower probabilities of snapping but increased probabilities of uprooting. Importantly, the effect of ρ decreasing the probabilities of snapping was more marked for smaller than larger trees and was further accentuated at higher MSW. Our work emphasises how local topography, tree size and species wood density together mediate cyclone damage to tropical forests, facilitating better predictions of the impacts of such disturbances in an increasingly windier world
    • 

    corecore